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Abstract. In this paper, subnormal operators, not necessarily bounded, are discussed as
generalized observables. In order to describe not only the information about the probability
distribution of the output data of their measurement but also the framework of their implementations,
we introduce a new concept of a compound-system-type normal extension, and we derive the
compound-system-type normal extension of a subnormal operator, which is defined from an
irreducible unitary representation of the algebra su(1, 1). The squeezed states are characterized
as the eigenvectors of an operator from this viewpoint, and the squeezed states in multi-particle
systems are shown to be the eigenvectors of the adjoints of these subnormal operators under a
representation. The affine coherent states are discussed in the same context, as well.

1. Introduction

In quantum mechanics, observables are described by self-adjoint operators and the probability
distributions of the output data of their measurement are determined by the spectral measures
of those self-adjoint operators and the density operators of states.

When a linear operator has its spectral measure, it is a normal operator where its self-
adjoint part and its skew-adjoint part commute with each other (lemma 3). In a broader sense,
therefore, it can be regarded as a complexified observable. (Note that from this viewpoint, in
the following, we will use the expression ‘measurement of a normal operator’ in this wider
sense, even if the normal operator is not always self-adjoint.) However, the measurements
in quantum systems, which are not necessarily the measurements of any observables, are
described by the positive operator-valued measures (POVM), which are a generalization of
spectral measures (definition 5 and lemma 4). In this paper, from these viewpoints, we try to
treat the observables generalized even for the class of subnormal operators‖, which is known
as a wider class including the class of normal operators. A subnormal operator is defined as
the restriction of the normal operator into a narrower domain. As far as the authors know,
such an idea generalizing observables was introduced by Yuen and Lax [1]. The pair of the
normal operator and the wider domain is called its normal extension (definition 2). We can
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define the POVM of a subnormal operator uniquely in a similar sense that we can define the
spectral measure of a normal operator uniquely under some condition (lemma 19). By this
correspondence, we will formulate the measurements of the subnormal operators which are not
necessarily bounded. In this paper, we will not only investigate the POVMs of the subnormal
operators but also give some examples of the framework of their implementations in a physical
sense.

There are many cases where the adjoint operator of a subnormal operator has eigenvectors
with continuous potency and an over-complete eigenvector system. In these cases, the POVM
constructed from the over-complete eigenvector system is just the POVM of the subnormal
operator (lemma 22). Thus the subnormal operator is closely related to eigenvectors with
continuous potency and to over-complete function systems, and these relations are important
for the discussion on the properties of the subnormal operator. This fact may give us an
illusion that the adjoint of any operator with a point spectrum with continuous potency would
be a subnormal operator. However, the subnormality is not necessarily guaranteed only by the
condition that its adjoint has a point spectrum with continuous potency†.

For example, an implementation of the measurement of a subnormal operator is already
known for an actual system in quantum optics. Let Q and P be the multiplication operator and
the (−i)-times differential operator on the Hilbert space L2(R). A POVM is constructed from

the over-complete eigenvector system of the boson annihilation operator ab :=
√

1
2 (Q + iP)

(known as the coherent states system). Then this POVM is just the POVM of the boson
creation operator a∗b which is a subnormal operator. The measurement of this POVM has
been implemented as shown in the following (see section 3, in detail), and is called the
heterodyne measurement; this implementation is performed by the measurement of a normal
operator on the compound system between the basic system (i.e. the system of interest
where the measurement is originally discussed) and an additional ancillary system prepared
appropriately. Note that this operation, of measuring a normal operator on the compound
system by preparing an additional ancillary system, gives a kind of normal extension of the
creation operator a∗b . However, only giving the definition of the normal extension is not
sufficient for discussing such a physical operation. For clarifying such a physical operation,
in section 3, we will introduce a new concept of a compound-system-type normal extension,
which describes not only the normal extension but also a framework of a physical operation
(given in definition 26).

In section 4, under the circumstance where an irreducible unitary representation of the
algebra su(1, 1) is given, we will construct two types of operators which have point spectra
with continuous potency, and will investigate what condition guarantees the subnormality of
these operators. The coherent states of the algebra su(1, 1) introduced by Perelomov [4], will
be reinterpreted as the eigenvectors of these operators. Moreover, in section 6, we will derive
the compound-system-type normal extensions of these operators when they are subnormal
operators.

In section 5.1, from the relationship between the irreducible unitary representations of the
algebra su(1, 1) and those of the affine group (ax + b group), we will discuss what subnormal
operators are related to the irreducible unitary representations of the affine group. Moreover,
we will discuss the correspondence between the eigenvectors of this subnormal operator (or
the coherent states of the algebra su(1, 1)) and the coherent states of the affine group. Hence
we will show a relationship between our problem and the irreducible unitary representation of
the affine group which is closely related to the continuous wavelet transform.

Next, in section 5.2, from the relationship between the representation of the algebra

† Its counterexamples are given in lemmas 36 and 39.
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su(1, 1) and the squeezed states, it will be confirmed that the squeezed states can be described as
the coherent states of the algebra su(1, 1) in our context. In other words, the squeezed states are
characterized as the eigenvectors of the operators (with point spectra with continuous potency)
which are canonically constructed from an irreducible unitary representations of the algebra
su(1, 1). However, the adjoints of these operators are not necessarily subnormal operators and
are not directly regarded as generalized observables.

We can easily confirm that the squeezed states are the eigenvectors of an operator with a
point spectrum with continuous potency as follows; according to Yuen [5], let bµ,ν := µab+νa∗b
with |µ|2 − |ν|2 = 1, and characterize the squeezed state by the eigenvector |α;µ, ν〉 of the
operator bµ,ν associated with the eigenvalue α ∈ C. In the special cases where α = 0,
the vector |0;µ, ν〉 can be obtained by operating the action of the group with the generators
1
2 Q2,− 1

2 P 2 and 1
2 (PQ + QP) upon the boson vacuum vector |0; 1, 0〉. The algebra with

these generators satisfies the commutation relations of the algebra su(1, 1). By operating
Q−1 (or (a∗b )−1) upon the characteristic equation bµ,ν |0;µ, ν〉 = 0 from the left, we have the
characteristic equations

Q−1P |0;µ, ν〉 = i
µ + ν

µ− ν
|0;µ, ν〉 (1)

−(a∗b )−1ab|0;µ, ν〉 = ν

µ
|0;µ, ν〉. (2)

In section 5.2, we will derive these two equations again and reinterpret them from the viewpoint
of the representation theory. In this framework, the operators Q−1P and (a∗b )−1ab have
point spectra with continuous potency and they are constructed from an irreducible unitary
representation of the algebra su(1, 1) naturally. While the adjoints of these operators are not
subnormal operators in the case of a one-particle system, the adjoints of these operators are
subnormal operators in the cases of two- and multi-particle systems. Hence we can characterize
a type of physically interpretable states by a tensor product, as the eigenvectors of the adjoints
of subnormal operators in the cases of two- and multi-particle systems.

From a more general viewpoint, our investigation in this paper is regarded as a problem
of the joint measurement between the self-adjoint part and the skew-adjoint part of a
subnormal operator which do not always commute with each other. However, we should
be careful about the difference between self-adjoint operators and symmetric operators in
these discussions, because there are many delicate problems when unbounded operators are
treated (section 6.1).

In this paper, the complex conjugate and the adjoint operator are denoted by ∗. And the
closure is denoted by the overline.

2. Subnormal operator and POVM

In this section, we will summarize several well known lemmas and will modify them for the
discussion in the following sections. Some of the well known lemmas will be extended for
unbounded operators, and the proofs of the extended version will be given, as well. In this
paper, only a densely defined linear operator will be discussed. In the following, Do(X) denotes
the domain of a linear operator X. A densely defined operator X is called closed if the domain
Do(X) is complete with respect to the graph norm

‖φ‖Do(X) :=
√
‖φ‖2 + ‖Xφ‖2.

In operator theory, for two densely defined operators X and Y , the product XY is defined as
φ 	→ X(Y(φ)) for any vector φ belonging to the domain Do(XY ) := {φ ∈ Do(X)|Xφ ∈
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Do(Y )}. The notation X ⊂ Y means that Do(X) ⊂ Do(Y ) and Xφ = Yφ, φ ∈ Do(X).
The notation X = Y , also means that X ⊂ Y and Y ⊂ X. We will begin with reviewing
the definition of the normal operator and that of the subnormal operator in the unbounded
case.

Definition 1. A closed operator T on H is called normal if it satisfies the condition T ∗T =
T T ∗.

Note that the operator X∗X is defined on its domain Do(X
∗X) := {φ ∈ Do(X)|Xφ ∈ Do(X

∗)}
and it is self-adjoint and non-negative.

Definition 2. A closed operator S is called subnormal if there exists a Hilbert spaceK including
H and a normal operator T on K such that S = T PH, where PH denotes the projection from
K to H and we write the operator SPH on the bigger space K by S. In the following, we call
the pair (K, T ) a normal extension of the subnormal operator S.

Remark 1. Many papers, for example, Stochel and Szafraniec [6, 7], Szafraniec [8], Ôta [9]
and Lahti et al [10], adopt another definition of the subnormality, which substitutes S ⊂ T PH
for S = T PH. According to Ôta [9], there exists an example which is not subnormal in our
definition, but subnormal in their definition.

For a spectral measure (i.e. a resolution of identity by projections) E over C,
∫

C
zE(dz) denotes

the operator

φ 	→ lim
n→∞

(∫
|z|<n

zE(dz)φ

)

with the domain{
φ ∈ H

∣∣∣∣
∫

C

|z|2〈φ, E(dz)φ〉 < ∞
}

.

Concerning normal operators, the following lemma is well known. See theorem 13.33 in Rudin
[11].

Lemma 3. For a normal operator T , there exists uniquely a spectral measure ET over C such
that T = ∫

C
zET (dz).

Lemma 3 tells us that a normal operator corresponds to a spectral measure by one to one. Next,
we will discuss measurements in a quantum system in order to investigate what corresponds
to lemma 3 in the case of subnormal operators.

Let H be a Hilbert space representing a physical system of interest. Then, the state is
denoted by a non-negative operator ρ on H whose trace is 1. It is called a density operator
on H, and the set of density operators on H is denoted by S(H). Let Pρ be the probability
distribution given by a density ρ and a measurement. Then, the probabilistic property of the
measurement is described by the map P : ρ 	→ Pρ . We can naturally assume that the map P

satisfies the following condition from the formulation of quantum mechanics:

λPρ1 + (1− λ)Pρ2 = Pλρ1+(1−λ)ρ2 0 < ∀λ < 1 ∀ρ1, ρ2 ∈ S(H). (3)

Lemma 4. For a map P satisfying (3), there uniquely exists a positive operator-valued measure
M defined in the following which satisfies the condition

Pρ(B) = tr M(B)ρ ∀B ∈ F(�) ∀ρ ∈ S(H).
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This lemma was proved by Ozawa [12] in a more general framework. For an easy proof of a
finite-dimensional case, see section 6 in chapter I of Holevo [13]. This lemma guarantees that
we only have to discuss POVMs in order to describe probabilistic properties.

Definition 5. Let M be a map from a σ -field F(�) over � to the set B+
sa(H) of bounded, self-

adjoint and non-negative operators on H. The map M is called a positive operator-valued
measure on H over � if it satisfies the following:

• M(∅) = 0 M(�) = I (I : indentity op.)
• ∑

i M(Bi) = M(∪iBi) for Bi ∩ Bj = ∅ (i �= j).

A POVM M is a spectral measure if and only if M(B) is a projection for any B. The following
lemma 6 is called Naı̌mark’s extension theorem. For a proof, see Naı̌mark [14], section 5 in
chapter II in Holevo [13] or theorem 6.2.18 in Hiai and Yanagi [15]. It implies that the set of
spectral measures is an important class in POVMs.

Lemma 6. Let M be a POVM over a σ -field F(�) on a Hilbert space H. There exists a Hilbert
space K including H and a spectral measure E on the Hilbert space K such that

M(B) = PHE(B)PH ∀B ∈ F(�)

where PH denotes the projection from K to H. We call such a pair (K, E) a Naı̌mark extension
of the POVM M .

In the following, we will treat only POVMs over the complex numbers C whose σ -field is a
family of Borel sets.

Definition 7. A closed subspace H′ of H is said to reduce a spectral measure E on H, if the
projection PH′ to H′ commutes with E(B) for any Borel set B. A Naı̌mark extension (K, E)

of a POVM M on H is called minimal if K has no non-trivial subspace which includes H and
reduces the spectral measure E.

The following lemma guarantees the uniqueness of the minimal Naı̌mark extension. It is proved
as a corollary of the principal theorem in section 6 of the appendix in Riesz and Sz-Nagy [16].

Lemma 8. Let (K1, E1) and (K2, E2) be Naı̌mark extensions of a POVM M on H. There exists
a unitary map V from K1 to K2 such that Uφ = φ for any φ ∈ H and V E1(B)V ∗ = E2(B)

for any Borel B.

We will give the following definition with respect to the inequalities among linear operators
which are not necessarily bounded.

Definition 9. For non-negative and self-adjoint operators X, Y on H, we denote X � Y if
they satisfy

〈φ, Xφ〉 � 〈φ, Yφ〉 ∀φ ∈ Df (q(X)) ⊂ Df (q(Y ))

where q(X) denotes the closed non-negative quadratic form defined by a non-negative self-
adjoint operator X and Df (q) denotes the domain of a closed non-negative quadratic form
q.

We introduce the operators E(M) and V(M) on H which formally represent
∫

C
zM(dz) and∫

C
|z|2M(dz), respectively. Later, by using lemma 10, we will give more rigorous definition

of E(M) and V(M). Then, for φ ∈ Df (q(M)), ‖φ‖ = 1 and a POVM M , the expectation
of the measurement of the state by the POVM M is 〈φ|E(M)|φ〉 and the variance of it is
〈φ|V(M)|φ〉 − |〈φ|E(M)|φ〉|2. It is sufficient to evaluate the operator V(M), in order to
evaluate the variance. However, when they are unbounded, we should be more careful with
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respect to their domains. We define the closed non-negative quadratic form q(M) with the
domain Df (q(M)) by

q(M)(φ, φ) :=
∫

C

|z|2〈φ, M(dz)φ〉 φ ∈ Df (q(M)).

Df (q(M)) :=
{

φ ∈ H
∣∣∣∣
∫

C

|z|2〈φ, M(dz)φ〉 < ∞
}

.

We assume the condition that the set Df (q(M)) is a dense subset of H. Let V(M) be the
self-adjoint operator defined by the closed non-negative quadratic form q(M). Next, we will
define the operator Ẽ(M). Define ER(M) := ∫

|z|<R
zM(dz). Then, the sequence {En(M)φ} is

a Cauchy sequence for any φ ∈ Df (q(M)), because we have

‖En(M)φ − Em(M)φ‖2 =
∫

n�|z|<m

|z|2〈φ, M(dz)φ〉

for n < m. Therefore, we can define the vector Ẽ(M)φ := limn→∞ En(M)φ. Thus, we can
define the operator Ẽ(M) on the domain Df (q(M)).

Lemma 10. The operator Ẽ(M) has a closed extension.

From this lemma, we can define the closed operator E(M) by the closure of the operator Ẽ(M).

Proof. Let (E, K) and PH be a Naı̌mark extension of M and the projection from K to H.
The operator T := ∫

zE(dz) is normal. From the definition of T , we have Do(T ) = {φ ∈
K| ∫ |z|2〈φ, E(dz)φ〉 < ∞}. Then the domain Df (q(M)) equals Do(T ) ∩H. Let T = U |T |
be a polar decomposition of T . Since the operator T is normal, we have U |T | = |T |U . This
equation implies that the domain of |T | is invariant under the action of U .

In general, for a closed operator X on K and closed subset H of K, the operator XPH
with the domain Do(X) ∩H is closed if Do(X) ∩H is dense in H. We can define the closed
operator T ∗PH on its domain Do(T

∗PH) := Do(T
∗) ∩H = Do(T ) ∩H = Df (q(M)). Then,

we have the relation Do((T
∗PH)∗) ⊃ Do(T ). Define the closed operator (T ∗PH)∗PH on its

domain Do((T
∗PH)∗PH) := Do((T

∗PH)∗)∩H ⊃ Do(T )∩H = Df (q(M)). Then, we obtain
(T ∗PH)∗PH ⊃ Ẽ(M). It follows that the operator Ẽ(M) has a closed extension. �

Lemma 11. Let X and M be an operator on a Hilbert space H and a POVM on the Hilbert
space H, respectively. If X ⊃ E(M), then we have V(M) � X∗X.

Proof. For a vector φ ∈ Df (q(M)), we have

q(M)(φ, φ)− 〈φ|X∗X|φ〉 =
∫

C

〈φ|(z∗ −X∗)M(dz)(z−X)|φ〉 � 0.

Since the relation Df (q(M)) ⊂ Do(E(M)) ⊂ Do(X) holds, we obtain lemma 11. �

The bounded version of this lemma is proved by Helstrom [17] from the viewpoint of
quantum estimation theory. Its bounded version also follows from Kadison’s inequality [18].

Lemma 12. Let S be an operator defined on the dense subset Do(S) of H. The operator S is
subnormal if and only if there exists a POVM M satisfying the conditions

S = E(M) (4)

S∗S = V(M). (5)
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Proof. Let (K, T ) and PH be a normal extension of the operator S and the projection from K
to H, respectively. By defining a POVM M by M(B) := PHET (B)PH, equation (4) is trivial.
Since the equation V(M) = (T PH)∗(T PH) = S∗S holds, we have equation (5). Assume
equations (4) and (5). From Naı̌mark’s extension theorem (lemma 6) there exists a Naı̌mark
extension (K, E) of the POVM M . Define a normal operator T := ∫

C
zE(dz). Then we have

V(M) = (T PH)∗(T PH), E(M) = PH(T PH). From equations (4), (5) and lemma 14, we can
prove that S is subnormal. �

The bounded version of this lemma was proved by Bram [19].

Definition 13. A POVM M is called a POVM of a subnormal operator S if M satisfies the
preceding conditions (4) and (5).

We will prove lemma 14 applied in the proof of lemma 12.

Lemma 14. Let S, K and PH be an operator on a Hilbert space H, a Hilbert space including
the Hilbert space H and the projection from K to H, respectively. For an operator T on K,
the following are equivalent:

(A) S = T PH.
(B) S∗S = (T PH)∗(T PH) S = PH(T PH).

Proof. It is easy to derive condition (B) from condition (A). Assume condition (B). We
have (T PH)∗(T PH) = (PH(T PH))∗(PH(T PH)) + ((I − PH)T PH)∗ ((I − PH)(T PH)) and
(PH(T PH))∗(PH(T PH)) = S∗S = (T PH)∗(T PH). Therefore, we obtain (I−PH)(T PH) = 0.
Thus, we obtain condition (A). �

Definition 15. A closed subspace H′ of H is said to reduce a normal operator T on H, if the
closed subspace H′ of H reduces its spectral measure ET . This condition is equivalent to
the condition that the projection PH′ commutes with the operators U , U ∗ and eit |T |2 for any
real number t , where T = U |T | is the polar decomposition of T with unitary U . A normal
extension (T , K) of a subnormal operator S on H is called minimal if K has no non-trivial
subspace which includes H and reduces the normal operator T .

The POVM M(B) := PHET (B)PH can be defined for a normal extension (T , K) of a
subnormal operator S, and it is a POVM of S. Conversely, from lemma 8, if the normal
extension (T , K) is minimal, the spectral measure ET is unitarily equivalent to the minimal
Naı̌mark extension of M . Therefore, there exists a one-to-one correspondence between
minimal normal extensions of a subnormal operator S and its POVMs.

Lemma 16. A normal extension (T , K) of a subnormal operator S on H is minimal if and only
if K = L, where the subspaces L and C of K is defined as

L :=
{

n∑
k=1

(U ∗)kψk

∣∣∣∣∣ψk ∈ C, n ∈ N

}

C :=
{

n∑
k=1

eitk |T |2ψk

∣∣∣∣∣ψk ∈ H, tk ∈ R, n ∈ N

}

where T = U |T | is the polar decomposition of T with unitary U .

Proof. Assume that a closed subspace K′ of K including H reduces the normal operator T .
Then, for any h ∈ H, any integer m and any real number t , we have eit |T |2h ∈ K′. Since the



7800 M Hayashi and F Sakaguchi

closed subspace K′ includes C, the closed subspace K′ includes C. Similarly, we can show that
the closed subspace K′ includes L from this fact.

Next, we will prove that the closed subspace C is invariant for U . It is sufficient to show
that Uφ ∈ C for any φ ∈ H. From the definition of C, the closure C reduces the operator |T |2.
Also, it reduces the operators |T | and |T |−1. Since Do(|T |−1) ⊂ Im T , Uφ = |T |−1Sφ ∈ C
holds for any φ ∈ Do(S). We have UH ⊂ C because U is bounded and Do(S) is dense in H.
Thus, Ueit |T |2φ = eit |T |2Uφ ∈ C for any φ ∈ H. It follows that C is invariant for U .

Therefore, we have the relations UL ⊂ L, U ∗L ⊂ L and eit |T |2L ⊂ L for any real number
t . These imply that [PL, U ] = 0, [PL, U ∗] = 0 and [PL, eit |T |2 ] = 0. It follows that the closed
subspace L reduces the normal operator T . The lemma is now immediately obvious. �

Lemma 17. Let (T , K) be a minimal normal extension of a subnormal operator S on H. A
Hilbert space K′ including H and a normal operator T ′ satisfy the condition S ⊂ T ′PH. The
following three conditions are equivalent.

(A) 〈φ1, eit |T |2φ2〉 = 〈φ1, eit |T ′|2φ2〉 holds for any φ1, φ2 ∈ H.
(B) 〈φ1, eit |T |φ2〉 = 〈φ1, eit |T ′|φ2〉 holds for any φ1, φ2 ∈ H.
(C) There exists an isometric map V from K to K′ such that V φ = φ for any φ ∈ H and

V T V ∗ = T ′PIm V .

The condition (C) implies that T ′PH = S, i.e. the pair (T ′, K′) is a normal extension of S.

Proof. It is easy to show that the conditions (A) and (B) follow from condition (C). First, we
prove that condition (A) implies condition (B). Define the subspace C′ of K′ by

C′ :=
{

n∑
k=1

eitk |T ′|2ψk

∣∣∣∣∣ψk ∈ H, tk ∈ R, n ∈ N

}
.

Similarly to the proof of lemma 16, we can prove that the closure C reduces |T |2 and
the closure C′ reduces |T ′|2. Then, the closures C and C′ reduce the operators |T | and |T ′|,
respectively. From condition (A), 〈eit1|T |2φ1, eit2|T |2φ2〉 = 〈eit1|T |2φ1, eit2|T ′|2φ2〉 holds for any
φ1, φ2 ∈ H and any real numbers t1, t2. Therefore, we can define the unitary map VC from C
to C′ by

VC

(
n∑

k=1

eitk |T |2φk

)
=

n∑
k=1

eitk |T ′|2φk.

Thus, we have VC |T |2V ∗
C = |T ′|2 on C′. It implies that VC |T |V ∗

C = |T ′| on C′ because the
closures C and C′ reduce the operators |T | and |T ′|, respectively. Since VCφ = φ for any
φ ∈ H and VCeit |T |V ∗

C = eit |T ′| for any t ∈ R, condition (B) holds. Similarly, we can prove
that condition (B) implies condition (A).

Next, we prove that condition (A) implies condition (C). From the above discussion, we
can define the inverses |T |−1 and |T ′|−1 on Im |T | ∩ C and Im |T ′| ∩ C′, respectively. Then we
have VC |T |−1V ∗

C = |T ′|−1 on Im |T ′| ∩ C′.
Let T = U |T | and T ′ = U ′|T ′| be the polar decompositions of T and T ′ satisfying that U

and U ′ are unitary, respectively. The image Im |T | is invariant under the unitary transformation
U , and the image Im |T ′| is invariant under U ′. Then, we have Im S ⊂ Im |T | ∩H. Similarly,
we have Im S ⊂ Im |T ′| ∩H. Thus, for any φ ∈ Im S, we have VC |T |−1φ = |T ′|−1φ. From
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the proof of lemma 16, the closed subspaces C and C′ are invariant for U and U ′, respectively.
For any φ1, φ2 ∈ Do(S), we have

〈eit |T |2φ1, Uφ2〉 = 〈VCeit |T |2φ1, VCUφ2〉 = 〈VCeit |T |2φ1, VC |T |−1Sφ2〉
= 〈VCeit |T |2V ∗

C VCφ1, VC |T |−1V ∗
C VCSφ2〉 = 〈eit |T ′|2VCφ1, |T ′|−1VCSφ2〉

= 〈eit |T ′|2φ1, |T ′|−1Sφ2〉 = 〈eit |T ′|2φ1, U ′φ2〉.
Since eit |T |2 , eit |T ′|2 , U and U ′ are bounded,

〈eit |T |2φ1, Uφ2〉 = 〈eit |T ′|2φ1, U ′φ2〉
holds, for any φ1, φ2 ∈ H. Also, we can prove〈(

n∑
k=1

eitk |T |2ψk

)
, U

(
n∑

k=1

eit ′k |T |2ψ ′
k

)〉
=

〈(
n∑

k=1

eitk |T ′|2ψk

)
, U ′

(
n∑

k=1

eit ′k |T ′|2ψ ′
k

)〉

for arbitrary ψk, ψ ′
k ∈ H, tk, t ′k ∈ R. Therefore,

〈φ1, Uφ2〉 = 〈VCφ1, U ′VCφ2〉
holds for any φ1, φ2 ∈ C. Since the closed subspace C is invariant for U and the operator U is
bounded,

〈φ1, Unφ2〉 = 〈VCφ1, U ′nVCφ2〉 (6)

holds for any φ1, φ2 ∈ C and any n ∈ N.
We can define the isometric map V from K = L to K′ by

V

(
n∑

k=1

(U ∗)kψk

)
=

(
n∑

k=1

(U ′∗)kψk

)

where ψk is an arbitrary element of C. It can be confirmed that this definition is well defined
from (6). Now, we can easily check condition (C). �

Definition 18. A vector φ ∈ D∞(X) := ∩∞n=0Do(X
n) is called an analytic vector of X if

∞∑
i=0

t i

i!
‖Xiφ‖ < ∞ (7)

for any t ∈ R. The set of all analytic vectors of S is written as A(S).

Lemma 19. Assume that the set A(S) is dense in H for a subnormal operator S on H. Let
(T , K) be a normal extension of S. If a Hilbert space K′ including H and a normal operator
T ′ satisfy the condition T ′PH ⊃ S, there exists an isometric map V from K to K′ such that
V φ = φ for any φ ∈ H and V T V ∗ = T ′PIm V . This implies that T ′PH = S, i.e. the pair
(T ′, K′) is a normal extension of S. Therefore, this assumption guarantees the uniqueness of
the minimal normal extension.

This lemma shows that under the assumption, the pair (T , H) is a normal extension of S if a
normal operator T on K including H satisfies T PH ⊃ S. For a simple proof in the bounded
case, see section 2 in chapter II of Conway [20]. Szafraniec [8] shows the uniqueness of the
minimal normal extension under another assumption that any vector φ ∈ D(S) satisfies (7) for
some a real number t > 0. Stochel and Szafraniec [7] discuss different sufficient conditions
for the uniqueness of the minimal normal extension.
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Proof. It is sufficient to show that condition (A) in lemma 17 holds. Schwarz’s inequality
guarantees

∞∑
k=0

tk

k!
〈Skφ1, Skφ2〉 <

√√√√ ∞∑
k=0

tk

k!
‖Skφ1‖2

√√√√ ∞∑
k=0

tk

k!
‖Skφ2‖2 < ∞.

for any φ1, φ2 ∈ A(S) and any real number t . From Fubini’s theorem,

〈φ1, eit |T |2φ2〉 =
〈
φ1,

∞∑
k=0

(it |T |2)k

k!
φ2

〉
=

〈
φ1,

∞∑
k=0

(it)k(T ∗)kT k

k!
φ2

〉

=
∞∑

k=0

(it)k

k!
〈Skφ1, Skφ2〉 = 〈φ1, eit |T ′|2φ2〉. (8)

From (8) and the fact that the operators eit |T |2 and eit |T ′|2 are bounded and A(S) is dense in
H, we have the equation PHeit |T |2PH = PHeit |T ′|2PH. Therefore, condition (A) in lemma 19
holds. �

From the one-to-one correspondence between POVMs of a subnormal operator S and its
minimal normal extensions, we have the following corollary.

Corollary 20. For any subnormal operator S satisfying the assumption of lemma 19, there
uniquely exists the POVM M satisfying equations (4) and (5).

Subnormal operators have the following properties:

Lemma 21. Let S be a subnormal operator on H. Then

S∗S � SS∗. (9)

Proof. We have (PHT )(PHT )∗ � (PH(PHT ))(PH(PHT ))∗ = SS∗. From the normality
of T , we have S∗S = (T PH)∗(T PH) = (T ∗PH)∗(T ∗PH). Since T ∗PH ⊂ (PHT )∗

(see theorem 13.2 in Rudin [11]), the inequality (T ∗PH)∗(T ∗PH) � (PHT )(PHT )∗ holds.
Therefore, S∗S � (PHT )(PHT )∗ � SS∗. �

Operators satisfying (9) are called hyponormal operators† and the class of these operators
is important in the operator theory. The following lemma shows a relation between the POVM
of a subnormal operator and an over-complete eigenvector system.

Lemma 22. Let J and K be an operator on H and a subset of complex numbers C, respectively.
Assume that there exists a vector |z〉 ∈ Do(J ) satisfying J |z〉 = z|z〉 for any complex number
z ∈ K , and there exists a measure µ on K satisfying

∫
K
|z∗〉〈z∗|µ(dz) = I . Then, J ∗ is

subnormal and the POVM |z∗〉〈z∗|µ(dz) is the POVM of the subnormal operator J ∗.

Proof. From the assumptions, we have

J ∗ =
∫

K

|z∗〉〈z∗|µ(dz)J ∗ =
∫

K

z|z∗〉〈z∗|µ(dz).

Note that 〈z∗|J ∗ = z〈z∗|. Thus, The POVM M(dz) := |z∗〉〈z∗|µ(dz) satisfies condition (4).
Therefore, we obtain

JJ ∗ =
∫

K

J |z∗〉〈z∗|J ∗µ(dz) =
∫

K

|z|2|z∗〉〈z∗|µ(dz) = V(M).

† This class was introduced by Halmos [2].
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Then the POVM M satisfies condition (5) and the operator J ∗ is subnormal, as shown from
lemma 12. We can confirm that the POVM |z∗〉〈z∗|µ(dz) is the POVM of the subnormal
operator J ∗. �

In the following of this section, we treat a relation between a subnormal operator and its
spectrum.

Lemma 23. Let S and φ be a subnormal operator and an eigenvector of S, respectively. Then,
a vector φ is an eigenvector of the adjoint S∗ operator of S.

Proof. Let (K, T ) and PH be a normal extension of S and the projection from K to H,
respectively. Assume that φ ∈ Do(S) is an eigenvector of S associated with an eigenvalue
c such that ‖φ‖ = 1. Since the equation T φ = cφ holds, we have T ∗φ = c∗φ. Thus
S∗ = PHT ∗. Therefore, we obtain S∗φ = c∗φ. Now, we obtain the lemma. �

Definition 24. A subnormal operator S is called pure subnormal if it satisfies the following
condition; if a subspace I of H satisfies that SPI is subnormal, then the subspace I is {0} or
H.

Lemma 25. Any pure subnormal operator S has no point spectrum.

Proof. Let (K, T ), PH and φ be defined in the proof of lemma 23. Since we have S∗φ = c∗φ,
the operator |φ〉〈φ| commutes with the pure subnormal operator S. The fact contradicts the
definition of pure subnormal operators. �

According to Conway [20], it is sufficient to assume the purity and hyponormality in
lemma 25.

3. Compound-system-type normal extension

Now, as an example of a subnormal operator and its normal extension, we will treat the
boson creation operator a∗b and the heterodyne measurement in quantum optics. The pair
(L2(R)⊗ L2(R), a∗b ⊗ I + I ⊗ ab) is a normal extension of the subnormal operator a∗b under
the isometric embedding L2(R) → L2(R) ⊗ L2(R) defined by ψ 	→ ψ ⊗ |0; 1, 0〉, where
|0; 1, 0〉 denotes the boson vacuum vector. Here, a∗b ⊗ I + I ⊗ ab is a normal operator, and we
have (a∗b ⊗ I + I ⊗ ab)φ ⊗ |0; 1, 0〉 = (a∗bφ)⊗ |0; 1, 0〉 for any φ ∈ L2(R). By substituting
ab for J in lemma 22 and by letting |α; 1, 0〉 be the boson coherent state, we can confirm that
|α; 1, 0〉〈α; 1, 0| d2α is the POVM of the subnormal operator a∗b . The set of rapidly decreasing
C∞ functions is dense in L2(R) and any rapidly decreasing C∞ function is analytic of a∗b .
Therefore, a∗b ’s POVM is uniquely determined.

The heterodyne measurement is implemented by the measurement of a∗b ⊗ I + I ⊗ ab (i.e.
the simultaneous measurement between Q⊗ I + I ⊗Q and P ⊗ I − I ⊗ P which commute
with each other) under the circumstance where the state of the basic system is |φ〉〈φ| and the
state of the ancillary system is controlled to be the vacuum states |0; 1, 0〉〈0; 1, 0|. In detail,
see section 6 in chapter III in Holevo [13] or section 6 in chapter V in Helstrom [17]. We will
generalize normal extensions of a similar type to this, by the name of compound-system-type
normal extensions, as follows:

Definition 26. Let S be a subnormal operator defined on a dense linear subspace Do(S) of H
and let H′, T and ψ be a Hilbert space, a normal operator defined on a dense subspace Do(T )

of the Hilbert space H ⊗H′ and an element of H′ whose norm is unity, respectively. We call
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the triple (H′, T , ψ) a compound-system-type normal extension of the subnormal operator S

if it satisfies the condition

Do(S)⊗ ψ ⊂ Do(T ) (Sφ)⊗ ψ = T (φ ⊗ ψ) for any φ ∈ Do(S). (10)

Thus the definition of the compound-system-type normal extension describes not only the
probability distribution but also a framework of the concrete implementation process, while the
definition of the normal extension given in section 2 describes only the probability distribution.
Therefore, a compound-system-type normal extension contains more information than the
corresponding POVM.

In the following section, we discuss compound-system-type normal extensions of
isometric operators and symmetric operators, where we let {|↑〉, |↓〉} be a CONS of C2.

Lemma 27. An isometric operator U defined on H is subnormal. Define the operator
T := U ⊗ |↑〉〈↑| + U ∗ ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↑〉〈↓|, where Im U⊥ denotes the orthogonal
complementary space of Im U . Then, the operator T is unitary on H ⊗ C2 and the triple
(C2, T , |↑〉) is a compound-system-type normal extension of U .

Proof. From the definition, we have

T ∗T = (
U ∗ ⊗ |↑〉〈↑| + U ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↓〉〈↑|)(

U ⊗ |↑〉〈↑| + U ∗ ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↑〉〈↓|)
= IH ⊗ |↑〉〈↑| + PIm U ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↓〉〈↓| = IH ⊗ IC2

T T ∗ = (
U ⊗ |↑〉〈↑| + U ∗ ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↑〉〈↓|)(

U ∗ ⊗ |↑〉〈↑| + U ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↓〉〈↑|)
= PIm U ⊗ |↑〉〈↑| + IH ⊗ |↓〉〈↓| + PIm U⊥ ⊗ |↑〉〈↑| = IH ⊗ IC2 .

Then, the operator T is unitary. Moreover, we have T (φ⊗|↑〉) = (Uφ)⊗|↑〉. Therefore, the
triple (C2, T , |↑〉) is a compound-system-type normal extension of U . �

A closed symmetric operator X is called maximally symmetric, if there exists no symmetric
operator Y such that X � Y .

Lemma 28. A closed symmetric operator X is subnormal on H. Define the operator
T := X∗ ⊗ |−〉〈+| + X⊗ |+〉〈−| on the domain Do(T ) := Do(X

∗)⊗ |+〉 ⊕Do(X)⊗ |−〉 with
|±〉 := 1√

2
(|↑〉 ± |↓〉), for the maximal symmetric operator X on H. Then, T is a self-adjoint

operator and the triple (C2, T , |↑〉) is a compound-system-type normal extension of X.

The classification of (second) self-adjoint extensions of symmetric operators is given in
section 5 in Naı̌mark [21].

Proof. We can confirm that T is self-adjoint. Do(T ) ∩ H ⊗ |↑〉 = Do(X) ⊗ |↑〉 and
T (φ ⊗ |↑〉) = (Xφ) ⊗ (|−〉〈+| + |+〉〈−|)|↑〉 = (Xφ) ⊗ |↑〉 = Xφ ⊗ |↑〉 holds for any
φ ∈ Do(X). The lemma is immediately obvious. �

For example, we apply the inequalities (9) in lemma 21 to a symmetric operator. If X is
self-adjoint, we have X∗X = XX∗. However, if the operator X has no self-adjoint extension,
we have X∗X � XX∗. This fact does not contradict the inequalities (9).

We have the following lemma from the classification by Naı̌mark and the following fact;
any maximal symmetric operator is unitarily equivalent to (I ⊗ P +) ⊕ Y or (I ⊗ P−) ⊕ Y ,
where Y is a self-adjoint operator and P + and P− are the momentum operators on L2(R+) and
L2(R−), respectively. This fact follows from section 104 in Ahkiezer and Glazman [22].
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Lemma 29. Any minimal normal (self-adjoint) extension of a closed symmetric operator X is
unitarily equivalent to each other if and only if X is maximal symmetric.

Remark 2. Lemma 29 gives an example of a subnormal operator such that its minimal normal
extension is not unique in the sense of unitary equivalence.

4. Irreducible unitary representations of the algebra su(1, 1) and their coherent states

In this section, from the minimal-weight-type unitary representations of the algebra su(1, 1)

(defined in this section), we will construct the corresponding subnormal operators canonically,
and will investigate the relationship between the coherent states defined by Perelomov [4] and
these subnormal operators.

Definition 30. A triplet (E0, E+, E−) of skew-adjoint operators is called a unitary
representation of the algebra su(1, 1) if the relations

[E0, E±] = ±2E± [E+, E−] = E0 (11)

hold.

For the reasoning behind this definition see remark 3. However, it is difficult to discuss the
unitary representation in this notation because three operators E0, E+, E− have no eigenvector.
Thus, we define another triplet (L0, L+, L−) by

L0 := i(E− − E+) L± := 1
2

(
E0 ± i(E+ + E−)

)
. (12)

Then, this triplet satisfies the commutation relations of the same type

[L0, L±] = ±2L± [L+, L−] = L0. (13)

For this triplet,

L∗0 = L0 L∗+ = −L− (14)

hold, where L+ and L− are neither self-adjoint nor skew-adjoint. Conversely, from the triplet
(L0, L+, L−) satisfying the conditions (13) and (14), a unitary representation (E0, E+, E−) of
the algebra su(1, 1) can be constructed by

E0 = L+ + L− E± = ± i

2
(L0 ∓ L+ ± L−). (15)

The Casimir operator is useful for the analysis of the representation. In the case of the algebra
su(1, 1), it is given by

C := E2
0 + 2(E+E− + E−E+) = L2

0 + 2(L+L− + L−L+). (16)

For the general definition, see pp 130–1 of Perelomov [4] or p 45 of Howe and Tan [23]. The
relation (16) can be written in another form

C = L2
0 − 2L0 + 4L+L− (17)

by using (13). From (11) and (13), the Casimir operator C is commutative with
E0, E+, E−, L0, L+ and L−. From the Schur’s lemma, in any irreducible representation, the
Casimir operator C is constant.
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Lemma 31. Non-trivial irreducible unitary representations of su(1, 1) are classified into the
following three cases:

case 1: dim L+ = 0 and dim L− = 1

case 2: dim L+ = 1 and dim L− = 0

case 3: dim L+ = 0 and dim L− = 0.

Case 2 is reduced to case 1, by exchanging L− for L+ and by changing the sign of L0. We will
not treat case 3 in this paper. Thus, only case 1 will be discussed.

Proof. The irreducibility requires that the dimensions of the kernels of L− and L+ are not
more than one. Moreover, if the dimensions of both kernels are one, then the representation
should be finite dimensional. However, this circumstance is forbidden by the unitarity of the
representation. Now, the lemma follows immediately. �

Lemma 32. The unit vector |0〉N belonging to the Kernel of L− is an eigenvector of L0. This
eigenvalue λ is called the lowest weight and specifies the irreducible unitary representation of
su(1, 1) uniquely and satisfies λ > 0. The equations

L0|n〉N = (λ + 2n)|n〉N
L+|n〉N =

√
(n + 1)(λ + n)|n + 1〉N

L−|n〉N = −
√

n(λ + n− 1)|n− 1〉N
(18)

hold, where we define

|n〉N := 1

‖(L+)n|0〉N‖ (L+)n|0〉N.

Proof. Because the Casimir operator should be scalar-valued, we can show that |0〉N is the
eigenvector of L0, from (17).

Let vn := (L+)n|0〉N . The commutation relations (13) yields the following relations:

L0vn = (λ + 2n)vn

L+vn = vn+1

L−vn = −n(λ + n− 1)vn−1

whence we can confirm that the lowest weight λ, with which |0〉N is associated, specifies the
representation uniquely. From the above assumptions, we can confirm that the basis {vn}∞n=1
is complete and orthogonal. From the above relations, the Casimir operator C is calculated to
be the scalar λ(λ− 2). From the commutation relations (13), we have

〈vn, vn〉 = n(λ + n− 1)〈vn−1, vn−1〉.
Therefore, the equation

|n〉N =
√

3(λ)

n!3(λ + n)
vn

holds. Thus, equation (18) follows immediately. The unitarity of the representation guarantees
λ > 0. (See theorem 1.1.5 on p 96 of Howe and Tan [23].) �

In the following discussions, Hλ denotes the representation space of the irreducible unitary
representation of su(1, 1) characterized by the lowest weight λ. We call such a representation
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(i.e. case 1) lowest-weight-type. The representation of the Lie group SU(1, 1) cannot be
constructed unless λ is an integer as the representation of the Lie group SO(3) cannot unless
the total momentum is an integer. (For more details, see remark 3.) In particular, when the
lowest weight λ is an integer, the representation of the Lie group SU(1, 1) is well known as
the discrete series [23, 24].

Definition 33. The operator N := 1
2 (L0 − λ) is called the su(1, 1)-number operator because

of (18). The bounded operator a := 1
2 L−1

+ (L0−λ) = L−1
+ N is called the su(1, 1)-annihilation

operator. Its definition is well defined because the vector N |n〉N belongs to the range of L+

for any n and the kernel of L+ is {0}. The su(1, 1)-creation operator is defined by the adjoint
a∗ of a.

The equations

a|n〉N =
√

n

n + λ− 1
|n− 1〉N (19)

a∗|n〉N =
√

n + 1

n + λ
|n + 1〉N (20)

hold, where we mean that a|0〉N = 0 by (19) in the exceptional case where λ = 1, n = 0, as a
convention. From (19), the commutation relation [a, N ] = a is derived. From (19) and (20),
we have

a∗a = (N + λ− 1)−1N aa∗ = (N + λ)−1(N + 1)

[a, a∗] = (λ− 1)(N + λ)−1(N + λ− 1)−1
(21)

for λ �= 1, and

aa∗ = I a∗a = I − |0〉N N 〈0| [a, a∗] = |0〉N N 〈0| (22)

instead of (21) for λ = 1. Next, we will construct the su(1, 1)-coherent state as follows:

Definition 34. Introduce the unitary operator U(ξ) := exp
(
ξL+ − ξ ∗L∗+

)
for a complex

number ξ , according to Perelomov [4]. For the complex number ζ such that |ζ | < 1, we
define the su(1, 1)-coherent state |ζ 〉a of the algebra su(1, 1) by

|ζ 〉a := U

(
1

2
ei arg ζ ln

1 + |ζ |
1− |ζ |

)
|0〉N. (23)

Squeezed states are characterized as su(1, 1)-coherent states, as we discuss in section 5.2.

Lemma 35. The su(1, 1)-coherent state |ζ 〉a is an eigenvector of a, i.e. the equation

a|ζ 〉a = ζ |ζ 〉a (24)

holds.

Proof. From the definition, we have

|ζ 〉a = exp(ζL+) exp

(
1

2
ln(1− |ζ |2) L0

)
exp(ζ ∗L−) |0〉N

= (1− |ζ |2)λ/2 exp(ζL+) |0〉N
(see pp 73–4 of Perelomov [4] for the derivation of the first equation). Because we can show
that [a, L+] = I , we obtain the commutation relation

[
a, exp(ζL+)

] = ζ exp(ζL+). Moreover,
from the relation exp

(
1
2 ln(1− |ζ |2) L0

)
exp(ζ ∗L−) |0〉N = (1− |ζ |2)λ/2|0〉N , we have

a|ζ 〉a = exp(ζL+) a |0〉N + ζ exp(ζL+)|0〉N = ζ |ζ 〉a. (25)
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Therefore, the coherent states of the algebra su(1, 1) are characterized as eigenvectors of the
su(1, 1)-annihilation operator a. �

Lemma 36. When 1 > λ > 0, a∗ and a are not subnormal. When λ � 1, a∗ is subnormal
and a is not subnormal. For λ > 1, a∗’s POVM is given by (λ − 1)|ζ ∗〉a a〈ζ ∗|µ(dζ ), where
we define

µ(dζ ) := d2ζ

π(1− |ζ |2)2
.

Proof. When λ > 0, it is shown that a is not subnormal, from lemma 23 and the fact that it
has eigenvectors. When λ < 1, it is shown that a∗ is not subnormal, from lemma 21 and the
fact that [a, a∗] � 0 does not hold (see (21)).

Moreover, when λ > 1, we can construct the resolution of the identity by the system of
the coherent states:

(λ− 1)

∫
D

|ζ 〉a a〈ζ |µ(dζ ) = I (26)

where D denotes the unit disc {z ∈ C| |z| < 1}. From this resolution of the identity and
lemma 22, when λ > 1, we can show that a∗ is a subnormal operator. On the other hand, when
λ � 1, the integral in (26) diverges. However, equations (22) imply that a∗ is isometric when
λ = 1. Then, a∗ is subnormal even when λ = 1. �

Definition 37. We formally define the operator

A := −i(a + 1)(a − 1)−1.

Since this operator is unbounded, we need to pay more attention to this definition. First,
define the unbounded operator Ã by a linear fractional transform (Möbius transform) of a,
as Ã := −i(a + 1)(a − 1)−1, where the domain Do(Ã) of Ã is defined by 〈{|n〉N }∞n=0〉. The
domain of Ã∗ is dense in Hλ, as will be shown in the last part of remark 6. Therefore, Ã is

closable and we can define the operator A by A := Ã = Ã∗∗. (See Reed and Simon [25].)

It is shown that |ζ 〉a ∈ Do(A) in the last part of remark 6. Hence we have

A|ζ 〉a = −i
ζ + 1

ζ − 1
|ζ 〉a.

By defining

|η〉A :=
∣∣∣∣η − i

η + i

〉
a

we can show that

A|η〉A = η|η〉A (27)

holds. (Formally, the operator a is the Cayley transform of A, with an appropriate discussion
on its domain.)

Lemma 38. We have another expression for A:

A = 1
2 E−1

+ (E0 − λ). (28)
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Proof. From the relations [a, L+] = I , (13), (15) and the definition of a, we can show that the
relations

2(E0 − λ)(a − 1)L+ = (L+ + L− − λ)
(
L0 − (λ− 2)− 2L+

)
= (L0 − L+ + L−)(−λ + L0 + 2 + 2L+)

= −4iE+(a + 1)L+

(E0 − λ)(a − 1)|0〉N = −(E0 − λ)|0〉N = (L0 − L+)|0〉N
= −2iE+|0〉N = −2iE+(a + 1)|0〉N

hold on Do(Ã). Hence, on Do(Ã), we have

(E0 − λ)(a − 1) = −2iE+(a + 1). (29)

By using (29), we obtain (28). �
From (28), we have

[A, A∗] = −(λ− 1)E−2
+

formally, and

A∗A− AA∗ = (λ− 1)
(
E−1

+

)∗
E−1

+

{
on Do(AA∗) for λ � 1

on Do(A
∗A) for 0 < λ < 1

(30)

in more precise form. (The proof of this relation will be given in remark 6.)

Lemma 39. When 1 > λ > 0, A and A∗ are not subnormal. When λ � 1, A∗ is subnormal
and A is not subnormal. For λ > 1, A∗’s POVM is given by (λ− 1)|η∗〉A A〈η∗|ν(dη), where
we define

ν(dη) := d2η

4π(Im η)2
.

Proof. For λ > 0, from lemma 23 and the fact that the operator A has eigenvectors, it is
shown that A is not subnormal. When λ < 1, A∗ is not subnormal because relation (21) shows
that the condition AA∗ � A∗A is not satisfied. Moreover, in a similar manner to the above
discussion, the resolution of the identity by the eigenvectors of A

(λ− 1)

∫
H
|η〉A A〈η|ν(dη) = I

holds when λ > 1. Hence, when λ > 1, we can show that A∗ is subnormal from lemma 22.
When λ � 1, the integral in (26) diverges. However, as will be proved in the last part
of remark 6, the operator A∗ is maximal symmetric when λ = 1. From lemma 28, A∗ is
subnormal even when λ = 1. �

Remark 3 (Relation to unitary representations of SU (1, 1)). In the following, we discuss
definition 30 from the viewpoint of a unitary representation of the group SU(1, 1). Any element
g in the group SU(1, 1) is specified by two complex numbers ν(g) = ν1(g) + ν2(g)i, µ(g) =
µ1(g) + µ2(g)i satisfying |ν(g)|2 − |µ(g)|2 = 1 as

g =
(

µ∗(g) ν(g)

ν∗(g) µ(g)

)
=

(
µ1(g)− µ2(g)i ν1(g) + ν2(g)i

ν1(g)− ν2(g)i µ1(g) + µ2(g)i

)
.
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The group SU(1, 1) is isomorphic to the group SL(2, R) by the map

j :

(
µ1(g)− µ2(g)i ν1(g) + ν2(g)i

ν1(g)− ν2(g)i µ1(g) + µ2(g)i

)
	→

(
µ1(g) + ν1(g) −µ2(g)− ν2(g)

µ2(g)− ν2(g) µ1(g)− ν1(g)

)
. (31)

The (Lie) algebra su(1, 1) associated with SU(1, 1) is written as

su(1, 1) =
{(

a1,1 a1,2

a2,1 a2,2

)∣∣∣∣∣
(

a∗1,1 −a∗2,1

−a∗1,2 a∗2,2

)
= −

(
a1,1 a1,2

a2,1 a2,2

)
, a1,1 + a2,2 = 0

}
.

The vector space su(1, 1) has the following basis e0, e+, e− as

e0 =
(

0 1
1 0

)
e+ = i

2

(
1 −1
1 −1

)
e− = i

2

( −1 −1
1 1

)
.

Thus, from the isomorphism (31), we can naturally define the isomorphism j∗ from the algebra
su(1, 1) to the algebra sl(2, R). Then, the image j∗(e0), j∗(e−), j∗(e+) of the basis is written
as

j∗(e0) =
(

1 0
0 −1

)
j∗(e+) =

(
0 1
0 0

)
j∗(e−) =

(
0 0
1 0

)
. (32)

The basis e0, e−, e+ satisfies the following commutation relation:

[e0, e±] = ±2e± [e+, e−] = e0. (33)

A map V from a group G to the set of unitary operators on a Hilbert space H is called a unitary
representation of the group G on H if

V (g1g2) = V (g1)V (g2) ∀g1, g2 ∈ G.

Let g be the Lie algebra associated with a Lie group G. From a unitary representation of the
group G on a Hilbert space H, we can naturally define the map V∗ from the Lie algebra g to
the set of skew-adjoint operators on H, by

V∗(X) := dV (exp(tX))

dt

∣∣∣∣
t=0

.

It satisfies that V∗([X, Y ]) = [V∗(X), V∗(Y )]. Then, a linear map f from a Lie algebra g to
the set of skew-adjoint operators on a Hilbert space H is called a unitary representation of the
Lie algebra g on H if

[f (X), f (Y )] = f ([X, Y ]) ∀X, Y ∈ g.

We can construct the unitary representation V of the universal covering group† Ĝ associated
with a Lie algebra g from a unitary representation f of g, by

V (exp X) := exp f (X) ∀X ∈ g.

Since any element of the (Lie) algebra su(1, 1) is described by a linear sum of bases e0, e+, e−,
we can uniquely construct the unitary representation of the algebra su(1, 1) from a triplet
(E0, E+, E−) of skew-adjoint operators satisfying (11). Thus, we can regard the triplet
(E0, E+, E−) satisfying (11) as the unitary representation of the algebra su(1, 1).

Remark 4 (Spectra of a, a∗, A, A∗). The point spectrum σp(a) is the open unit disc D, the
continuous spectrum σc(a) is the unit circle S := {z ∈ C||z| = 1} and the residual spectra is
the empty set. Moreover, from lemma 45, the point spectrum σp(a∗), the continuous spectrum
σc(a

∗) and the residual spectrum σr(a
∗) of a∗ are the empty set, S and D, respectively.

† A group is called a universal covering group if it is connected and if its homotopy group is trivial.
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It is shown that the point spectrum σp(A) of A is the upper-half-plane H , the continuous
spectrum σc(A) is the real axis R and the residual spectrum σr(A) is the empty set. On the
other hand, from lemma 45, the point spectrum σp(A∗), the continuous spectrum σc(A

∗) and
the residual spectrum σr(A

∗) of A∗ are the empty set, R and H , respectively.

Remark 5 (Action of the group to operators a, A). First, we discuss the action to an
operator a. We let π

ŜU(1,1)
be the projection from the universal covering group ̂SU(1, 1)

to the group SU(1, 1), and let U be the maximal Cartan subgroup of ̂SU(1, 1), i.e. the one-
parameter subgroup generated by iL0.

The homogeneous space ̂SU(1, 1)/U is isomorphic to the open unit disc D in the sense
that an element g of the group ̂SU(1, 1) acts on the open unit disc D as

ζ 	→ µ∗ζ + ν

ν∗ζ + µ
ζ ∈ D

where we simply use the notation µ and ν instead of the complex numbers µ ◦π
ŜU(1,1)

(g) and
ν ◦ π

ŜU(1,1)
(g) with the functions µ and ν defined at the beginning of remark 3, respectively.

We let V be the representation of the group ̂SU(1, 1), defined by this representation of su(1, 1).
Then, we have

V (g)|ζ 〉a a〈ζ |V (g)∗ =
∣∣∣∣µ∗ζ + ν

ν∗ζ + µ

〉
a

a

〈
µ∗ζ + ν

ν∗ζ + µ

∣∣∣∣ g ∈ ̂SU(1, 1) ζ ∈ C. (34)

Thus, for any element g ∈ ̂SU(1, 1) and any complex number ζ , there exists a real number
θ(g, ζ ) such that

V (g)|ζ 〉a = eiθ(g,ζ )

∣∣∣∣µ∗ζ + ν

ν∗ζ + µ

〉
a

. (35)

Equations (24) and (35) imply that

V (g)∗aV (g)|ζ 〉a = µ∗ζ + ν

ν∗ζ + µ
|ζ 〉a. (36)

Since the subspace 〈{|ζ 〉a}〉† is dense, we obtain

V (g)∗aV (g) = (µ∗a + ν)(ν∗a + µ)−1

where we can define the bounded operator (ν∗a + µ)−1 by

(ν∗a + µ)−1 := 1

µ

∞∑
n=1

(
−ν∗

µ
a

)n

because the norm of the operator − ν∗
µ

a is less than 1.
Next, we consider the action to the operator A. Similarly to (36), we have

V (g)AV (g)∗|η〉A = (µ1 + ν1)η − µ2 − ν2

(µ2 − ν2)η + µ1 − ν1
|η〉A

where we simplify µi ◦ π
ŜU(1,1)

(g) and νi ◦ π
ŜU(1,1)

(g) as µi and νi , respectively.

† 〈X〉 denotes the vector space whose elements are finite linear sums of a set X.



7812 M Hayashi and F Sakaguchi

5. Concrete representations of su(1, 1)

5.1. Representation associated with irreducible unitary representation of the affine group

Next, we will construct lowest-weight-type irreducible unitary representations of the algebra
su(1, 1) from an irreducible unitary representation of the affine group (ax +b group) generated
by E+ and E0. The representation which will be constructed in this section is closely related to
the continuous wavelet transformation [26, 27]. In this representation, the pair A and |η〉A play
a more important role than the pair a and |ζ 〉a . According to Aslaksen and Klauder [28], there
is no irreducible representation of the affine group but the representations equivalent unitarily
to the following representation on L2(R+) or L2(R−)

E0 = i(PQ + QP) E+ = iQ (37)

where E0 and E+ are shown to be skew adjoint. In this representation, the vector√
(2 Im η)2k+1

3(2k + 1)
xkeiηx

is called the affine coherent state†, and it is obtained by operating the affine group on the affine
vacuum state √

22k+1

3(2k + 1)
xke∓x.

In the following, we will construct an irreducible unitary representation of the algebra su(1, 1)

from the above type of unitary representation of the affine group, and will discuss how to
interpret the affine coherent states in terms of the unitary representation of the algebra su(1, 1).
Therefore, in addition to the two generators in (37), we should introduce the representation of
another additional generator E−. By choosing

Ẽ−,k := −i(PQP + k2Q−1) (k > − 1
2 ) (38)

for this additional generator, we can construct an irreducible unitary representation where the
triplet E0, E+ and E− satisfies the commutation relations (11). However, we should be careful
about the domain of Ẽ−,k , as follows; first, define the dense subspace Do(Ẽ−,k) of L2(R+) by

Do(Ẽ−,k) :=
{

f (x) = xkf0(x) ∈ L2(R+)

∩ C1(R+)

∣∣∣∣ (2k + 1)xkf ′0(x) + xk+1f ′′0 (x) ∈ L2(R+)

lim sups→0 f0(s) < ∞ xkf0(x) → 0 as x →∞

}
.

Then Ẽ−,k is an operator defined on Do(Ẽ−,k). We need attention to the domain when
− 1

2 < k < 1
2 .

Lemma 40. The operator Ẽ−,k has the skew-adjoint extension, uniquely.

In the following, its skew-adjoint extension is written as E−,k .

† The Fourier transform of this affine coherent state is equivalent to the Cauchy wavelet in signal processing, whose
basic wavelet function is (constant)/(t ± i)k+1.
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Proof. It is confirmed that iẼ−,k = PQP +k2Q−1 is a symmetric operator on Do(Ẽ−,k), from
the fact that the difference∫ t

s

((
PQP + k2Q−1

)
f
)∗

(x)g(x) dx −
∫ t

s

(f (x))∗
((

PQP + k2Q−1
)
g
)
(x) dx

= [
x(f ′(x))∗g(x)− xg′(x)(f (x))∗

]t

s

= t (f ′(t))∗g(t)− tg′(t)(f (t))∗

−
(

sg(s)

(
(f ′(s))∗ − k

s
(f (s))∗

)
− s(f (s))∗

(
g′(s)− k

s
g(s)

))
= t (f ′(t))∗g(t)− tg′(t)(f (t))∗ − (

sg(s)sk(f ′0(s))
∗ − s(f (s))∗skg′0(s)

)
tends to zero as s → 0, t →∞. Since iẼ−,k is semi-bounded, the Friedrich extension theorem
guarantees that there uniquely exists the self-adjoint extension of iẼ−,k . (See p 177 of Reed
and Simon [29].) Now, the proof is complete. �

By letting L+,k, L−,k, L0,k, Ãk, Ak, Nk, |n〉kN and |η〉kA be L+, L−, L0, Ã, A, N, |n〉N and
|η〉A in this representation, respectively, we have

L+,k = 1
2

(
i(PQ + QP)−Q + PQP + k2Q−1

)
L−,k = 1

2

(
i(PQ + QP) + Q− PQP − k2Q−1

)
L0,k =

(
PQP + k2Q−1 + Q

)
Ãk = P + ikQ−1

Nk = 1
2

(
PQP + k2Q−1 + Q− 1− 2k

)
|n〉kN (x) =

√
22k+1n!

3(n + 2k + 1)
e−xxkS2k

n (2x)

|η〉kA(x) =
√

(2 Im η)2k+1

3(2k + 1)
xkeiηx

when Sl
n(x) is the Sonine polynomial (or the associated Laguerre polynomial) defined by†

Sl
n(x) :=

n∑
m=0

(−1)m

(n−m)!

3(n + l + 1)xm

3(m + l + 1)m!
.

|η〉kA(x) is the affine coherent state. Moreover, in this representation, the minimum eigenvalue
of L0,k is λ = 2k + 1, and the Casimir operator is 4k2 − 1. Thus, we have the following
theorem.

Theorem 41. The representations of lowest-weight-type (defined in section 4), in general, can
be concretely constructed by (37) and (38) on L2(R+) in the correspondence λ = 2k + 1.

Remark 6 (Domains of Ak, A∗k). In the following, we will show the properties of Ãk in order
to show the properties of Ã in the representations of lowest-weight-type. Since the domain of
Ãk is 〈{|n〉}∞n=0〉 and Ãk = P + ikQ−1, the relation

Do(Ã
∗
k) ∩ C1(R+) =

{
x−kf (x) ∈ L2(R+) ∩ C1(R+)

∣∣∣∣∣ x−kf ′(x) ∈ L2(R+)

f (s) → 0 as s → 0

}
(39)

† Sometimes another definition with n + l instead of l is used.
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is derived, and hence we can show that Do(Ã
∗
k) is dense in L2(R+). Thus Ãk is shown to be a

closable operator. Since Ak = Ãk , the relation

Do(Ak) ∩ C1(R+) =
{

xkf (x) ∈ L2(R+) ∩ C1(R+)

∣∣∣∣∣ xkf ′(x) ∈ L2(R+)

lim sups→0 f (s) < ∞

}
(40)

is confirmed. Note that X = X∗∗ and X∗ = X
∗

hold for a densely defined linear operator
X, and that lim supx→∞ f0(x) = 0 for k > − 1

2 when xkf0(x) ∈ L2(R+). From (40), we can
show that |ζ 〉a ∈ Do(Ak). Thus, the subspaces Do(A

∗
k)∩C1(R+) and Do(Ak)∩C1(R+) are the

cores† of A∗k and Ak . When − 1
2 < k < 1

2 , the domain of Ak is larger than the domain of A∗−k ,
though Ak and A∗−k are the same formally, i.e. A∗−k � Ak . In the special case where λ = 1
(i.e. where k = 0), A∗0 is symmetric. Since A0 = A∗∗0 has no spectrum in the lower half-plane,
A∗0’s deficiency indices are (1, 0). (For the definition of deficiency indices, see p 138 of Reed
and Simon [29] or p 360 of Rudin [11].) Therefore, the operator A∗0 is a maximally symmetric
operator.

These relations Do(A
∗
k) ⊂ Do(Ak) and Do(A

∗
k) ⊂ Do(E

−1
+ ) are shown in the cases where

λ < 1 (k > 0), only the relation Do(A
∗
k) ⊂ Do(Ak) is shown when λ = 1 (k = 0), and these

relations Do(Ak) ⊂ Do(A
∗
k) and Do(Ak) ⊂ Do(E

−1
+ ) are shown when 0 < λ < 1 (− 1

2 < k <

0). From theorem 6, these discussions and (28), we obtain (30).

5.2. Representation associated with squeezed states

Next, we will discuss the following representation of the algebra su(1, 1) on the Hilbert space
L2(R); let

E0 = i

2
(PQ + QP) E+ = i

2
Q2 E− = − i

2
P 2 (41)

then we have

L0 = nb +
1

2
L+ = −1

2
(a∗b )2 L− = 1

2
(ab)

2 (42)

where the boson annihilation operator ab and the boson number operator nb are given by

ab =
√

1
2 (Q + iP)

and

nb = 1
2 (Q2 + P 2 − 1) = a∗bab.

In this representation, the Casimir operator is the scalar − 3
4 . From the fact that the Casimir

operator is the scalar λ(λ− 2), the solutions are λ = 1
2 , 3

2 . Under the representation given in
(41), L2(R) is not irreducible and it is decomposed into two irreducible subspaces as

L2(R) = L2
even(R)⊕ L2

odd(R)

where L2
even(R) is the set of square-integrable even functions and L2

odd(R) is the set of square-
integrable odd functions. The solution λ = 1

2 corresponds to the subspace L2
even(R) and the

† A subspace of the domain Do(X) of a closed operator X is called a core of X if it is dense in Do(X) with respect
to the graph norm of the operator X.
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solution λ = 3
2 does to the subspace L2

odd(R). In the subspace L2
even(R), the operators a, A

and N are written in the forms

a = −(a∗b )−1ab A = Q−1P N = 1

2
nb |n〉N = (−1)n|2n〉nb

Do(A) ∩ C1(R) =
{

f ∈ L2
even(R) ∩ C1(R)

∣∣∣∣1

x
f ′(x) ∈ L2(R)

}
where |n〉nb

denotes the eigenvector in L2(R) of the boson number operator nb associated with
the eigenvalue n.

Lemma 42. In the action of su(1, 1) on L2
even(R), we have

|0;µ, ν〉〈0;µ, ν| = V (g)|0〉a a〈0|V (g)∗ =
∣∣∣∣ ν

µ

〉
a

a

〈
ν

µ

∣∣∣∣ =
∣∣∣∣i µ + ν

µ− ν

〉
A

A

〈
i
µ + ν

µ− ν

∣∣∣∣. (43)

Note that the squeezed state |0;µ, ν〉 is defined as the unit eigenvector of bµ,ν = µab + νa∗b
associated with the eigenvalue 0.

Proof. We need the discussion of remarks 3 and 5 for the proof. It is necessary to discuss
the action of the group. From this representation of the algebra su(1, 1), we can construct the

representation of the double-covering group ˜SU(1, 1) of the group SU(1, 1). In general, we

can construct the representation of ˜SU(1, 1) in the case where λ is a half-integer. Now, we let

π
S̃U(1,1)

be the projection from ˜SU(1, 1) to SU(1, 1). From (41), we have

etE0Qe−tE0 = etQ etE+Qe−tE+ = Q etE−Qe−tE− = Q− P t

etE+P e−tE+ = P −Qt etE0P e−tE0 = e−tP etE0P e−tE0 = P.

From (31), (32) and some calculations, we have

V (g)QV (g)∗ = (µ1 + ν1)Q + (ν2 − µ2)P

V (g)PV (g)∗ = (ν2 + µ2)Q + (µ1 − ν1)P ∀g ∈ ˜SU(1, 1)

where the complex numbers µi ◦ π
S̃U(1,1)

(g) and νi ◦ π
S̃U(1,1)

(g) with the functions µi and νi

defined at the beginning of remark 3 are denoted simply by µi and νi , respectively, in a similar
manner to the previous section. Thus, we have

V (g)abV (g)∗ = µab + νa∗b

V (g)a∗bV (g)∗ = ν∗ab + µ∗a∗b ∀g ∈ ˜SU(1, 1)

where we simplify µ ◦ π
S̃U(1,1)

(g) and ν ◦ π
S̃U(1,1)

(g) by µ and ν, respectively, similarly.

Since L− = 1
2 (ab)

2, the lowest-weight vector |0〉a is the boson vacuum vector |0; 1, 0〉.
The squeezed state |0;µ, ν〉 satisfies (µab +νa∗b )|0;µ, ν〉 = 0. Assume that µ◦π

S̃U(1,1)
(g) =

µ, ν ◦ π
S̃U(1,1)

(g) = ν. Then we have V (g)abV (g)∗|0;µ, ν〉 = 0. Hence, we see that the
vector V (g)∗|0;µ, ν〉 equals a scalar times a vacuum vector |0; 1, 0〉 = |0〉a . From these facts
and (34), we obtain (43). �

From (43), we find the correspondence to the characteristic equations (1) and (2) of
squeezed states explained in section 1. Substituting (43) into (24) and (27), we obtain (2) and
(1). In the following, the vector |ζ 〉a in L2

even(R) is denoted by |ζ 〉a,even. Equations (23) and
(43) imply that the squeezed state |0;µ, ν〉 equals a scalar times

exp

(
−ξ

2
(a∗b )2 +

ξ ∗

2
(ab)

2

)
|0; 1, 0〉
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corresponding to Caves’s notation [30] for squeezed states, where

ξ := 1

2
exp

[
i arg

ν

µ

]
ln
|µ| + |ν|
|µ| − |ν| .

On the other hand, in L2
odd(R), the operators a, A and N are written in the forms

a = −ab(a
∗
b )−1 A = PQ−1 N = 1

2
(nb − 1) |n〉N = (−1)n|2n + 1〉nb

.

Next, we will discuss the representation of the algebra su(1, 1) in the Hilbert space
L2(Rn) = L2(R)⊗ · · · ⊗ L2(R)︸ ︷︷ ︸

n

, for multi-particle systems. In this representation,

E0 = i

2

n∑
j=1

(
PjQj + QjPj

)
E+ = i

2

n∑
j=1

Q2
j E− = − i

2

n∑
j=1

P 2
j (44)

hold, where Qj and Pj denote the multiplication operator and the (−i)-times differential
operator, respectively, with respect to the j th variable. Let L2

e(Rn) be the closure of the linear
space generated by

{|ζ 〉⊗n
a,even := |ζ 〉a,even ⊗ · · · ⊗ |ζ 〉a,even︸ ︷︷ ︸

n

}.

Then, the Hilbert space L2
e(Rn) is irreducible under the representation (44) of the algebra

su(1, 1), and then we have L2
e(Rn) = {f ∈ L2(Rn)|f is a function of

∑n
j=1 x2

j }, and then the
vector |ζ 〉a in this representation on L2

e(Rn) is equivalent to |ζ 〉⊗n
a,even.

Letting An,e denote the operator A in this representation, we obtain the relation

An,e =
(

n∑
j=1

Q2
j

)−1
n∑

j=1

QjPj = −i

(
n∑

j=1

2xj

r

∂

∂xj

)

with

r := 2
n∑

j=1

x2
j .

Now define the unitary map

Un : L2(Rn) → L2(R+)⊗ L2(Sn−1) ∼= L2(R+ × Sn−1)

by

(Un(f ))(r, (e1, e2, . . . , en)) = r
n−2

4 f

(√
r

2
e1,

√
r

2
e2, . . . ,

√
r

2
en

)
where Sn−1 denotes the (n−1)-dimensional spherical surface and (e1, e2, . . . , en) is an element
of Sn−1. Then, the following relations hold:

UnE0U
∗
n = E0, n−2

4
⊗ I UnE+U ∗

n = E+, n−2
4
⊗ I UnE−U ∗

n = E−, n−2
4
⊗ I

UnAn,eU
∗
n =

(
P + i

(
n

4
− 1

2

)
Q−1

)
⊗ I = −i

∂

∂r
+ i

(
n

4
− 1

2

)
1

r

UnL
2
e(R

n) = L2(R+)⊗ ψn

UnDo(An,e) ∩
(
C1(R+)⊗ ψn

)
=

{
x

n
4− 1

2 f (x) ∈ L2(R+) ∩ C1(R+)

∣∣∣∣∣ x
n
4− 1

2 f ′(x) ∈ L2(R+)

f (s) < ∞ as s → 0.

}
⊗ ψn
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where ψn denotes the constant function on Sn−1 such that ‖ψn‖ = 1. The compound-system-
type normal extension of An,e in the above relations is reduced to the discussion of A n

4− 1
2

which
will be treated in sections 6.1 and 6.2.

6. Construction of a compound-system-type normal extension of A∗

6.1. The case where λ = 1

In this subsection, we will construct a compound-system-type normal extension of A∗ when
λ = 1. Let {|↑〉, |↓〉} be a CONS of C2. From lemma 28 and the fact that A∗ is maximally
symmetric, we obtain the following theorem.

Theorem 43. Define the operator T := A⊗ |−〉〈+| + A∗ ⊗ |+〉〈−| on the domain Do(T ) :=
Do(A) ⊗ |+〉 ⊕ Do(A

∗) ⊗ |−〉 with |±〉 := 1√
2
(|↑〉 ± |↓〉). The operator T is a self-adjoint

operator. Moreover, the triple (C2, T , |↑〉) is a compound-system-type normal extension of
A∗.

Similarly, we can construct a compound-system-type normal extension of a∗ according to
lemma 27. The spectrum of the compound-system-type normal extension of A∗ for λ = 1
appears only on the real axis. That of the compound-system-type normal extension of a∗

appears only on the unit circle.

6.2. The cases where λ > 1

In the following, we will discuss the cases when λ > 1. Let {|↑〉, |↓〉} be CONS of C2. We
obtain the following theorem, with A0 (Ak with k = 0) discussed at the end of section 5.1.

Theorem 44. The pair of E+⊗I and E0⊗I +I ⊗E0 on Hλ⊗Hλ−1 satisfies the commutation
relation of the generators of the Affine group. This representation of the Affine group is
written as follows: there exists a Hilbert space H′ and a unitary map U from Hλ ⊗ Hλ−1

to H′ ⊗ L2(R+) such that U(E+ ⊗ I )U ∗ = I ⊗ E+, U(E0 ⊗ I + I ⊗ E0)U
∗ = I ⊗ E0.

Then, the operator U ∗(I ⊗ A0)U ⊗ |−〉〈+| + U ∗(I ⊗ A∗0)U ⊗ |+〉〈−| with the domain
Do

(
U ∗(I ⊗ A0)U

)⊗ |+〉 ⊕ Do

(
U ∗(I ⊗ A0)U

)⊗ |−〉 is self-adjoint.
Moreover, the operator T := U ∗(I ⊗A0)U ⊗|−〉〈+|+ U ∗(I ⊗A∗0)U ⊗|+〉〈−|− iE−1

+ ⊗
E+⊗ I with the domain Do(T ) := (Do

(
U ∗(I ⊗ A0)U

)⊗ |+〉 ⊕ Do

(
U ∗(I ⊗ A∗0)U

)⊗ |−〉)∩
Do(E

−1
+ ⊗ E+) ⊗ C2 is normal. The triple (H′

λ := Hλ−1 ⊗ C2, T , ψ := |0〉N ⊗ |↑〉) is a
compound-system-type normal extension of A∗.

Proof. We need the discussion of remark 6 for the proof. It is sufficient to prove them under the
representations given in section 5.1 because of theorem 41. Now define the unitary operator U

on L2(R+)⊗L2(R+) by
(
U(f )

)
(u, v) = √vf (v, uv). Then we have U(E+⊗I )U ∗ = I⊗E+,

U(E0 ⊗ I + I ⊗ E0)U
∗ = I ⊗ E0 and U(−iE−1

+ ⊗ E+)U ∗ = −E+ ⊗ I . Because the
discussion at the end of section 5.1 shows that A0 is closed and symmetric, it follows from
the proof of lemma 28 that the operator A0 ⊗ |−〉〈+| + A∗0 ⊗ |+〉〈−| is self-adjoint and
its domain is Do(A

∗) ⊗ |−〉 ⊕ Do(A) ⊗ |+〉. In general, for a self-adjoint operator X on
K1 and a skew-adjoint operator Y on K2, we can show that the operator X ⊗ I + I ⊗ Y

with the domain Do(X) ⊗ Do(Y ) = Do(X) ⊗ K2 ∩ K1 ⊗ Do(Y ) ⊂ K1 ⊗ K2 is normal.
Then, the operator T ′ := I ⊗ (

A0 ⊗ |−〉〈+| ⊕ A∗0 ⊗ |+〉〈−|
) − E+ ⊗ I ⊗ I with the domain

Do(T
′) := (Do(I ⊗ A0)⊗ |+〉 ⊕ Do(I ⊗ A∗0)⊗ |−〉

) ∩ Do(E+) ⊗ L2(R+) ⊗ C2 is normal.
Thus, we have proved that the operator T (= U ∗T ′U) is normal. Now, we will prove that

the triple (H′
λ, T , ψ = |0〉k−

1
2

N ⊗ |↑〉) is a compound-system-type normal extension of A∗k .
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Since the set Do(A
∗
k) ∩ C1(R+) is a core of the operator A∗k , it is sufficient to show that

(A∗kφ)⊗ |0〉k−
1
2

N ⊗ |↑〉 = T
(
φ ⊗ |0〉k−

1
2

N ⊗ |↑〉
)

for any φ ∈ Do(A
∗
k) ∩ C1(R+).

From the definitions and (39), some calculations result in

U
((Do(A

∗
k) ∩ C1(R+)

)⊗ |0〉k− 1
2

N

)
= {f (v)uk−1/2e−uv ∈ L2(R+ × R+)|x−kf ′(x) ∈ L2(R+), f (s) → 0 as s → 0}.

We can show that a function u 	→ uk−1/2e−uv is contained by Do(E+) ⊂ L2(R+) for any
v ∈ R+. If a function f satisfies the condition x−kf ′(x) ∈ L2(R+), f (s) → 0 as s → 0, then
a function v 	→ f (v)uk−1/2e−uv is contained by Do(A

∗
0) ⊂ L2(R+) for any u ∈ R+.

Then, the set

U
((Do(A

∗
k) ∩ C1(R+)

)⊗ |0〉k− 1
2

N

)
is included in the set

Do(I ⊗ A∗0) ∩ Do(E+ ⊗ I ) ∩ (
C1(R+)⊗ C1(R+)

)
.

Hence,

U
((Do(A

∗
k) ∩ C1(R+)

)⊗ |0〉k− 1
2

N

)
⊗ |↑〉

⊂ Do(I ⊗ A∗0 ⊗ I ) ∩ Do(E+ ⊗ I ⊗ I ) ∩ (
C1(R+)⊗ C1(R+)⊗ |↑〉)

⊂ Do(I ⊗ (A∗0 ⊗ |+〉〈−| + A0 ⊗ |−〉〈+|)) ∩ Do(E+ ⊗ I ⊗ I )

∩ (
C1(R+)⊗ C1(R+)⊗ |↑〉)

= Do(T
′) ∩ (

C1(R+)⊗ C1(R+)⊗ |↑〉).
Thus, for the function f (x) satisfying φ(x) = f (x)x−k , we obtain

T (φ ⊗ |0〉k−
1
2

N ⊗ |↑〉)

= −i
d

dv

(
f (v)uk− 1

2 e−uv
)
⊗ (|+〉〈−| + |−〉〈+|) |↑〉 − if (v)uk+ 1

2 e−uv ⊗ |↑〉

= −i
df

dv
(v)uk− 1

2 e−uv ⊗ |↑〉

= (Akφ)⊗ |0〉k−
1
2

N ⊗ |↑〉.
The theorem is now immediate. �

In the above discussions, it is sufficient only to choose Hλ−1 instead of H′
λ in order only to

show that the operator T formally satisfies [T , T ∗] = 0 and formally satisfies (10). However,
the above definition of H′

λ is required in order that T may be a normal operator defined in
definition 1.

Since the spectrum of the compound-system-type normal extension of A∗ for λ = 1
appears only in the upper half-plane including the real axis, the spectrum of the compound-
system-type normal extension of a∗ appears only on the unit disc (including the unit circle) if
the latter is related to the former by the adjoint of the Cayley transform.
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7. Conclusions

We have discussed subnormal operators as a class of generalized observables. A POVM of
a subnormal operator defined in definition 13 has little information about its implementation.
However, in order to describe not only the probability distributions characterized by the POVMs
but also a framework of their implementations, we have defined compound-system-type normal
extensions in section 3. (The heterodyne measurement known in quantum optics is interpreted
as a special case of compound-system-type normal extensions.) In these contexts, we have
constructed the compound-system-type normal extensions of two subnormal operators a∗ and
A∗ canonically introduced from an irreducible unitary representation of su(1, 1), when the
minimum eigenvalue λ of the generator L0 is not less than one. The squeezed states are
regarded as the coherent states of the algebra su(1, 1), and have been characterized as the
eigenvectors of an operator defined in this mathematical framework. The squeezed states in
two-particle or multi-particle systems have been interpreted as the eigenvectors of the adjoints
a and A of the subnormal operators a∗ and A∗. The coherent states of the affine group have
been interpreted within the same framework, as well. The squeezed states in a one-particle
system have been interpreted as the eigenvectors of the operator a and A, though the operators
a∗ and A∗ are not subnormal and their compound-system-type normal extensions do not exist
in this case because λ is less than one in this case.

The information described by a compound-system-type normal extension is not enough
to completely specify the experimental implementation, where the measurement of the normal
operator on the compound system is performed by the measurement on each system after
some interactions were made between the basic system and the ancillary system. Therefore,
the formulation including this specification is a future problem. As another possibility, since
the affine group is closely related to the Poincaré group, our results concerning the affine group
may be applicable to relativistic quantum mechanics.
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Appendix

The following lemma about spectra is well known. (See Hiai and Yanagi [15].) In Hiai and
Yanagi [15], it is proved in the case of bounded operators. However, it can be easily extended
to the case of unbounded operators.

Lemma 45. For a densely defined operator A on H, Let σp(A), σc(A) and σr(A), be the point
spectrum, the continuous spectrum and the residual spectrum, respectively. Then we have the
following relations:

• λ ∈ σr(A) ⇒ λ∗ ∈ σp(A∗)
• λ ∈ σp(A) ⇒ λ∗ ∈ σr(A

∗) ∪ σp(A∗)
• λ ∈ σc(A) ⇒ λ∗ ∈ σc(A

∗).
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