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Abstract

Let H1,H2 be finite dimensional complex Hilbert spaces describing the states of

two finite level quantum systems. Suppose ρi is a state in Hi, i = 1, 2. Let C(ρ1, ρ2)

be the convex set of all states ρ inH = H1⊗H2 whose marginal states inH1 andH2

are ρ1 and ρ2 respectively. Here we present a necessary and sufficient criterion for a

ρ in C(ρ1, ρ2) to be an extreme point. Such a condition implies, in particular, that

for a state ρ to be an extreme point of C(ρ1, ρ2) it is necessary that the rank of ρ does

not exceed
(
d2

1 + d2
2 − 1

) 1
2 , where di = dim Hi, i = 1, 2. When H1 and H2 coincide

with the 1-qubit Hilbert space C2 with its standard orthonormal basis {|0 >, |1 >}
and ρ1 = ρ2 = 1

2I it turns out that a state ρ ∈ C(1
2I,

1
2I) is extremal if and only if ρ

is of the form |Ω >< Ω| where |Ω >= 1√
2
(|0 > |ψ0 > +|1 > |ψ1 >) , {|ψ0 >, |ψ1 >}

being an arbitrary orthonormal basis of C2. In particular, the extremal states are

the maximally entangled states. Using the Weyl commutation relations in the space

L2(A) of a finite abelian group we exhibit a mixed extremal state in C
(

1
nIn,

1
n2 In2

)
.

Key words : Coupled quantum systems, marginal states, extreme points, doubly

stochastic matrices, separable and nonseparable states.



1 Introduction

One of the well-known problems of classical probability theory is the determination of

the set of all extreme points in the convex set of all probability distributions in a product

Borel space (X × Y, F × G) with fixed marginal distributions µ and ν on (X,F) and

(Y,G) respectively. Denote this convex set by C(µ, ν). When X = Y = {1, 2, . . . , n} ,
F = G is the field of all subsets of X and µ = ν is the uniform distribution then the

problem is answered by the famous theorem of Birkhoff and von Neumann [1], [2] that the

set of extreme points of the convex set of all doubly stochastic matrices of order n is the

set of all permutation matrices of order n. Problems of this kind have a natural analogue

in quantum probability. Suppose H1 and H2 are finite dimensional complex Hilbert

spaces describing the states of two finite level quantum systems S1 and S2 respectively.

Then the Hilbert space of the coupled system S12 is H1 ⊗ H2. Suppose ρi is a state of

Si in Hi, i = 1, 2. Any state ρ in S12 yields marginal states TrH2ρ in H1 and TrH1ρ

in H2 where TrHi
is the relative trace over Hi. Denote by C (ρ1, ρ2) the convex set of

all states ρ of the coupled system S12 whose marginal states in H1 and H2 are ρ1 and

ρ2 respectively. One would like to have a complete description of the set of all extreme

points of C (ρ1, ρ2) . In this paper we shall present a necessary and sufficient criterion

for an element ρ in C (ρ1, ρ2) to be an extreme point. This leads to an interesting (and

perhaps surprising) upper bound on the rank of such an extremal state ρ. Indeed, if ρ

is an extreme point of C (ρ1, ρ2) then the rank of ρ cannot exceed (d2
1 + d2

2 − 1)
1
2 where

di = dim Hi. Note that the rank of an arbitrary state in H1 ⊗ H2 can vary from 1 to

d1d2. When H1 = H2 = C2, {|0 >, |1 >} is the standard (computational) basis of C2 and

ρ1 = ρ2 = 1
2
I it turns out that a state ρ in C

(
1
2
I, 1

2
I
)

is extremal if and only if ρ has

the form |Ω >< Ω| where |Ω >= 1√
2
(|0 > |ψ0 > +|1 > |ψ1 >) , {|ψ0 >, |ψ1 >} being any

orthonormal basis of C2. These are the well-known maximally entangled states.

A major part of this work was done by the author during his visit to the Univer-

sity of Greifswald during 17 June - 16 July under a DST (India) - DAAD (Germany)

project between the Indian Statistical Institute and the mathematics department of the

University of Greifswald. The author is grateful to these organisations for their generous

support. The hospitality extended by the colleagues of the Quantum Probability group

in the University of Greifswald and, particularly, Michael Schurmann is gratefully ac-
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knowledged. The example of Section 4 was constructed during the author’s visit to the

University of Nottingham during 13-25 August, 2003 when he enjoyed the hospitality of

R. L. Hudson and J. M. Lindsay. Finally, the author expresses his thanks to Mr. Anil

Shukla for his help in texing the manuscript.

2 Extreme points of the convex set C (ρ1, ρ2)

In the analysis of extreme points in a compact convex set of positive definite matrices

the following proposition plays an important role [7]. See also [3], [4] and [6].

Proposition 2.1 Let ρ be any positive definite matrix of order n and rank k < n. Then

there exists a permutation matrix σ of order n, a k × (n − k) matrix A and a strictly

positive definite matrix K of order k such that

σρσ−1 =

[
K KA

A†K A†KA

]
(2.1)

If, in addition, ρ = 1
2
(ρ′ + ρ′′) where ρ′ and ρ′′ are also positive definite matrices then

there exist positive definite matrices K ′, K ′′ of order k such that

σρ#σ−1 =

[
K# K#A

A†K# A†K#A

]
(2.2)

where # indicates ′ and ′′.

Proof: Choose vectors ui ∈ Cn, i = 1, 2, . . . , n such that

ρ = ((〈ui|uj〉)) , i, j ∈ {1, 2, . . . , n} .

Since rank ρ = k, the linear span of all the ui’s has dimension k. Hence modulo a per-

mutation σ of {1, 2, . . . , n} we may assume that u1,u2, . . . ,uk are linearly independent

and

uk+j = a1ju1 + a2ju2 + · · ·+ akjuk, 1 ≤ j ≤ n− k. (2.3)
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Putting

K = ((〈ui|uj〉)), i, j ∈ 1, 2, . . . , k,

A = ((aij)), i = 1, 2, . . . , k; j = 1, 2, . . . , n− k

and denoting by the same letter σ, the permutation unitary matrix of order n corre-

sponding to σ we obtain the relation (2.1). To prove the second part we express

σρσ−1 =

[
K KA

A†K A†KA

]
=

1

2

[
K ′ B1

B†
1 C1

]
+

1

2

[
K ′′ B2

B†
2 C2

]

where the two partitioned matrices on the right hand side are the matrices σ ρ′σ−1 and

σρ′′σ−1. Now construct vectors vi, wi, i = 1, 2, . . . , n such that

σρ′σ−1 = ((〈vi|vj〉)), i, j ∈ {1, 2, . . . , n} (2.4)

σρ′′σ−1 = ((〈wi|wj〉)), i, j ∈ {1, 2, . . . , n}. (2.5)

Let |0 >, |1 > be the standard orthonormal basis of C2. Define

|ϕi >=
1√
2
(|vi > |0 > +|wi > |1 >), 1 ≤ i ≤ n. (2.6)

Then we have

< ϕi|ϕj > =
1

2
(〈vi|vj〉+ 〈wi|wj)

= 〈ui|uj〉 for all i, j{1, 2, . . . , n}.

Thus the correspondence ui → ϕi is an isometry. Hence by (2.3) we have

ϕk+j = a1jϕ1 + a2jϕ2 + · · ·+ akjϕk, 1 ≤ j ≤ n− k.

Substituting for the ϕi’s from (2.6) and using the orthogonality of |0 > and |1 > we

conclude that

|vk+j > =
k∑

i=1

aij|vi >, (2.7)

|wk+j > =
k∑

i=1

aij|wi > . (2.8)
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Putting

K ′ = ((〈vi|vj〉)), i, j ∈ {1, 2, . . . , k}

K ′′ = ((〈wi|wj〉)), i, j ∈= {1, 2, . . . , k}

and substituting (2.7) and (2.8) in (2.4) and (2.5) we obtain B1 = K ′A, C1 = A†K ′A,

B2 = K ′′A, C2 = A†K ′′A. Thus we have (2.2).

Let H1, H2 be two complex Hilbert spaces of finite dimension d1, d2 and equipped

with orthonormal bases {e1, e2, . . . , ed1}, {f 1,f 2, . . . ,f d2
} respectively. Consider the

tensor product H = H1 ⊗ H2 equipped with the orthonormal basis gij = ei ⊗ f j with

the ordered pairs ij in the lexicographic order. For any operator X on H we associate

its marginal operators Xi in Hi by putting

X1 = TrH2X, X2 = TrH1X

where TrHi
stands for the relative trace over Hi. If ρ is a state on H, i.e., a positive

operator of unit trace, then its marginal operators are states in H1 and H2. Now we fix

two states ρ1 and ρ2 in H1 and H2 respectively and consider the compact convex set

C(ρ1, ρ2) = {ρ|ρ a state onH with marginals ρ1 and ρ2 in H1 and H2 respectively. }

in B(H). Let E(ρ1, ρ2) ⊂ C(ρ1, ρ2) be the set of all extreme points in C(ρ1, ρ2).

Proposition 2.2 Let ρ ∈ E(ρ1, ρ2). Then ρ is singular.

Proof: Suppose ρ is nonsingular. Choose nonzero hermitian operators Li in Hi with

zero trace. Then for all sufficiently small and positive ε, the operators ρ± εL1 ⊗ L2 are

positive definite. Since the marginal operators of L1 ⊗ L2 are 0, both of the operators

ρ± εL1 ⊗ L2 belong to C(ρ1, ρ2) and

ρ =
1

2
((ρ+ εL1 ⊗ L2) + (ρ− εL1 ⊗ L2))

and ρ is not extremal.

Proposition 2.3 Let n = d1d2, ρ ∈ C(ρ1, ρ2), rank ρ = k < n and let σ be a permu-

tation of the ordered basis {gij} of H such that

σρσ−1 =

[
K KA

A†K A†KA

]
, (2.9)
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where K is a strictly positive definite matrix of order k. Then, in order that ρ ∈ E(ρ1, ρ2)

it is necessary that there exists no nonzero hermitian matrix L of order k such that both

the marginal operators of

σ−1

[
L LA

A†L A†LA

]
σ (2.10)

vanish.

Proof: Suppose there exists a nonzero hermitian matrix L of order k such that both

the marginals of the operator (2.10) vanish. Since K in (2.9) is nonsingular and positive

definite it follows that for all sufficiently small and positive ε, the matrices K ± ε L are

strictly positive definite. Hence

ρ =
1

2

{
σ−1

[
K + εL (K + εL)A

A†(K + εL) A†(K + εL)A

]
σ + σ−1

[
K − εL (K − εL)A

A†(K − εL) A†(K − εL)A

]
σ

}

where each summand on the right hand side has the same marginal operators as ρ.

Furthermore [
K ± εL (K ± εL)

A†(K ± εL) A†(K ± εL)A

]
=

[
I

A†

]
(K ± εL) [I|A] ≥ 0.

Thus ρ is not extremal.

Corollary Let ρ ∈ E(ρ1, ρ2). Then rank ρ ≤
√
d2

1 + d2
2 − 1.

Proof: Let rank ρ = k. By proposition 2.2, k < n. Since ρ is a positive definite matrix

in the basis {gij} such that σρσ−1 can be expressed in the form (2.9). The extremality

of ρ implies that there exists no nonzero hermitian matrix L of order k such that the

matrix (2.10) has both its marginals equal to 0. The vanishing of both the marginals of

(2.10) is equivalent to

Tr σ−1

[
L LA

A†L A†LA

]
σ

(
X1 ⊗ I(2) + I(1) ⊗X2

)
= 0 (2.11)
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for all hermitian operators Xi in Hi, I
(i) being the identity operator in Hi. Equation

(2.11) can be expressed as

Tr L [Ik|A]σ
(
X1 ⊗ I(2) + I(1) ⊗X2

)
σ−1

[
Ik
A†

]
= 0.

In other words L is in the orthogonal complement of the real linear space

D =

{
[Ik|A]σ

(
X1 ⊗ I(2) + I(1) ⊗X2

)
σ−1

[
Ik
At

]∣∣∣∣Xi hermitian inHi, i = 1, 2

}
,

with respect to the scalar product 〈L|M〉 = TrLM between any two hermitian matrices

of order k. Thus the extremality of ρ implies that D⊥ = {0}. The real linear space of all

hermitian matrices of order k has dimension k2. The real linear space of all hermitian

operators of the form X1⊗ I(2) + I(1)⊗X2 is d2
1 + d2

2− 1. Thus k2 = dimD ≤ d2
1 + d2

2− 1.

Proposition 2.4 Let ρ ∈ C (ρ1, ρ2) , k, σ,K,A be as in Proposition 2.3. Suppose there

is no nonzero hermitian matrix L of order k such that both the marginal operators of

σ−1

[
L LA

A†L A†LA

]
σ

vanish. Then ρ ∈ E(ρ1, ρ2).

Proof: Suppose ρ 6∈E(ρ1, ρ2). Then there exist two distinct states ρ′, ρ′′ in C(ρ1, ρ2) such

that

ρ =
1

2
(ρ′ + ρ′′), ρ′ 6= ρ′′.

Since rank ρ = k it follows from Proposition 2.1 that there exist positive definite matrices

K ′, K ′′ of order k such that

σρ#σ−1 =

[
K# K#A

A†K# A†K#A

]

where
(
ρ#, K#

)
stands for any of the three pairs (ρ,K), (ρ′, K ′), (ρ′′, K ′′). Since ρ′ 6= ρ′′

and hence σρ′σ−1 6= σρ′′σ−1 it follows that K ′ 6= K ′′. Putting L = K ′ − K ′′ 6= 0 we
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obtain a nonzero hermitian matrix L of order k such that both the marginal operators

of

σ−1

[
L LA

A†L A†LA

]
σ

vanish. This is a contradicton.

Combining Proposition 2.3, its Corollary and Proposition 2.4 we have the following

theorem.

Theorem 2.5 Let H1, H2 be complex finite dimensional Hilbert spaces of dimension d1,

d2 respectively. Suppose C(ρ1, ρ2) is the convex set of all states ρ in H = H1⊗H2 whose

marginal states in H1 and H2 are ρ1 and ρ2 respectively. Let {ei}, {f j} be orthonormal

bases for H1, H2 respectively and let gij = ei ⊗ f j, i = 1, 2, . . . , d1; j = 1, 2, . . . , d2 be

the orthonormal basis of H in the lexicographic ordering of the ordered pairs ij. In order

that an element ρ in C(ρ1, ρ2) be an extreme point it is necessary that its rank k does

not exceed
√
d2

1 + d2
2 − 1. Let σ be a permutation unitary operator in H, permuting the

basis {gij} and satisfying

σρσ−1 =

[
K KA

A†K A†KA

]
where K is a strictly positive definite matrix of order k. Then ρ is an extreme point of

the convex set C(ρ1, ρ2) if and only if the real linear space

D =

{
[Ik|A]σ

(
X1 ⊗ I(2) + I(1) ⊗X2

)
σ−1

[
I

At

]∣∣∣∣Xi hermitian in Hi, i = 1, 2

}
coincides with the space of all hermitian matrices of order k.

Proof: Immediate from Proposition 2.3, its Corollary and Proposition 2.4.

3 The case H1 = H2 = C2

We consider the orthonormal basis

|0 >=

[
1

0

]
, |1 >=

[
0

1

]
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in C2 and write

|xy >= |x > ⊗|y > for all x, y ∈ {0, 1}.

Then e1 = |00 >, e2 = |01 >, e3 = |10 >, e4 = |11 > constitute an ordered orthonormal

basis for C2 ⊗ C2. For any state ρ in C2 ⊗ C2 define

Kρ ((x, y), (x′, y′)) = 〈xy|ρ|x′y′〉 x, y, x′, y′ ∈ {0, 1}. (3.1)

If ρ has marginal states ρ1, ρ2 then

Kρ ((x, 0), (x′, 0)) + Kρ ((x, 1), (x′, 1)) = 〈x|ρ1|x′〉, (3.2)

Kρ ((0, y), (0, y′)) + Kρ ((1, y), (1, y′)) = 〈y|ρ2|y′〉 (3.3)

for all x, y, x′, y′ in {0, 1}. If ρ is an extreme point of the convex set C(ρ1, ρ2) it follows

from Theorem 2.5 that the rank of ρ cannot exceed
√

7. In other words, every extremal

state ρ′ in C(ρ1, ρ2) has rank 1 or 2. When ρ1 = ρ2 = 1
2
I we have the following theorem :

Theorem 3.1 Let H1 = H2 = C2. A state ρ in C(1
2
I, 1

2
I) is an extreme point if and only

if ρ = |Ω >< Ω| where

|Ω >=
1√
2

(|0 > ⊗|ψ0 > +|1 > ⊗|ψ1 >) ,

{|ψ0 >, |ψ1 >} being an orthonormal basis of C2.

Proof: We shall first show that there is no extremal state ρ of rank 2 in C(1
2
I, 1

2
I).

To this end choose and fix a state ρ of rank 2 in C(1
2
I, 1

2
I). Then the right hand sides

of (3.2) and (3.3) coincide with 1
2
δxx′ and 1

2
δyy′ respectively and in the ordered basis

{ej, 1 ≤ j ≤ 4} the positive definite matrix Kρ of rank 2 in (3.1) assumes the form

Kρ =


a
2

x y z

x̄ 1−a
2

t −y
ȳ t̄ 1−a

2
−x

z̄ −ȳ −x̄ a
2

 (3.4)

for some 0 ≤ a ≤ 1, x, y, z, t ∈ C. The fact Kρ has rank 2 implies that one of the following

three cases holds :
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(1)

[
a
2

x

x̄ 1−a
2

]
is strictly positive definite ;

(2)

[
a
2

y

ȳ 1−a
2

]
is strictly positive definite ;

(3) |x|2 = |y|2 = a(1−a)
4

and one of the matrices

[
a
2

z

z̄ a
2

]
,

[
1−a
2

t

t̄ 1−a
2

]
is strictly

positive definite.

We shall first show that case (3) is vacuous. We assume that

|x|2 = |y|2 =
a(1− a)

4
, |z|2 < a2

4
, rankKρ = 2. (3.5)

conjugation by the unitary permutation matrix corresponding to the permutation (1)(24)(3)

brings (3.4) to the form 
a
2

z

z̄ a
2

y x

−x̄ −ȳ
ȳ −x
x̄ −y

1−a
2

t̄

t 1−a
2

 (3.6)

with rank 2. By Proposition 2.1 this implies that[
1−a
2

t̄

t 1−a
2

]
= A†KA (3.7)

where

A = K−1

[
y x

−x̄ −ȳ

]
, K =

[
a
2

z

z̄ a
2

]
(3.8)

Putting x =

√
a(1−a)

2
eiθ, y =

√
a(1−a)

2
eiϕ, substituting the expressions of (3.8) in (3.7) and

equating the 11-entry of the matrices on both sides of (3.7) we get∣∣∣a
2

+ z e−i(θ+ϕ)
∣∣∣2 = 0

and therefore |z|2 = a2

4
, a contradiction.

The case |t|2 < (1−a)2

4
is dealt with in the same manner.
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Now we shall prove that ρ is not extremal. Express (3.4) as

Kρ =

[
K KA

A†K A†KA

]
(3.9)

where

K =

[
a
2

x

x̄ 1−a
2

]
, A = K−1

[
y z

t −y

]
(3.10)

A†KA = dK−1, d =
a(1− a)

4
− |x|2 > 0 (3.11)

This implies the existence of a unitary matrix U such that

K
1
2A = d

1
2UK− 1

2 .

From (3.10) we have [
y z

t −y

]
= KA = d1/2K1/2UK−1/2.

Hence Tr U = 0. Since U is a unitary matrix of zero trace it has the form

U = eiθ V

where V is a selfadjoint unitary matrix of determinant −1. In particular

A = d1/2eiθK−1/2V K−1/2 (3.12)

where V is selfadjoint and unitary. We now examine the linear space

D =

{
[I2|A] (X1 ⊗ I2 + I2 ⊗X2) [

I2
At

]

∣∣∣∣Xi is hermitian for each i

}
. (3.13)

In the ordered basis {ej, j = 1, 2, 3, 4} it is easily verified that X1 ⊗ I2 + I2 ⊗X2 in D
varies over all matrices of the form{[

X + pI2 rI2

r̄I2 X + qI2

]∣∣∣∣∣X hermitian, p, q ∈ R, r ∈ C

}
.

Thus

D =
{
X + AXA† + rA† + r̄A+ qAA† + pI

∣∣X hermitian, p, qεR, r ∈ C
}
.
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We now search for a hermitian matrix L of order 2 in D⊥ with respect to the scalar

product 〈X1|X2〉 = TrX1X2 for any two hermitian matrices of order 2. In other words

we search for a hermitian L satisfying

Tr L = 0, Tr LK−1/2V K1/2 = 0

Tr L
(
X + dK−1/2V K−1/2XK−1/2V K−1/2

)
= 0

}
(3.14)

for all hermitian X. (Here we have substituted for A from (3.12)).

Note that
√
dK−1/2V K−1/2 = B is a hermitian matrix of determinant −1. Thus

(3.14) reduces to

Tr L = 0, Tr LB = 0, L+BLB = 0. (3.15)

The matrix B can be expressed as

B = WDW t

where W is unitary and

D =

[
α 0

0 −α−1

]
, α > 0.

Then for any ξ ∈ C the hermitian matrix

L = W t

[
0 ξ

ξ̄ 0

]
W

satisfies (3.15). In other words D⊥ 6= {0} and therefore the linear space D in (3.13) is

not the space of all hermitian matrices of order 2. Hence by Theorem 2.5, the state ρ is

not extremal.

Thus every extremal state ρ in C(1
2
I, 1

2
I) is of rank 1. Such an extremal state ρ has

the form

ρ = |Ω >< Ω|

where

|Ω > =
∑

x,y∈{0,1}

axy|xy >,∑
x,y

|axy|2 = 1.
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The fact that |Ω >< Ω| has its marginal operators equal to 1
2
I implies that ((axy)) =

1√
2
((uxy)) where ((uxy)) is a unitary matrix of order 2. Putting

1∑
y=0

uxy|y >= |ψx >

we see that

|Ω >=
1√
2

(|0 > |ψ0 > +|1 > |ψ1 >) (3.16)

where {|0 >, |1 >} is the canonical orthonormal basis in C2 and {|ψ0 >, |ψ1 >} is

another orthonormal basis in C2 (which may coincide with {|0 >, |1 >}). Varying the

orthonormal basis {|ψ0 >, |ψ1 >} of C2 in (3.16) we get all the extremal states of C(1
2
I, 1

2
I)

as |Ω >< Ω|.

4 An example of a mixed extremal state in C
(

1
nIn,

1
n2In2

)
which is also nonseparable

Let A be a finite additive abelian group of cardinality n, addition operation + and null

element 0. Choose and fix a symmetric bicharacter 〈., .〉 on A× A satisfying

〈a, b〉 = 〈b, a〉, |〈a, b〉| = 1,

〈a, b+ c〉 = 〈a, b〉〈a, c〉

for all a, b, c ∈ A. Denote by H the Hilbert space L2(A) with respect to the counting

measure in A and consider the orthonormal basis :

|a >= 1{a}, a ∈ A,

where the right hand side denotes the indicator function of the singleton {a} in A. Define

the unitary operators Ua, Vb in H by

Ua |c > = |a+ c >,

Vb |c > = 〈b, c〉 |c >
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for all a, b, c in A. Then we have the Weyl commutation relations

UaUb = Ua+b, VaVb = Va+b, VbUa = 〈a, b〉UaVb for all a, b ∈ A.

Put

Wx = UaVb, x = (a, b) ∈ A× A.

Then the family {Wx} is irreducible and

Tr W †
xWy = nδxy.

In particular
{

1√
n
Wx, x ∈ A× A

}
is an orthonormal basis in the Hilbert space B(H) of

all operators on H with the scalar product

〈X|Y 〉 = TrX†Y, X, Y ∈ B(H).

Define the operator matrix

P =
1

n2

[
W †

xWy

]
, x, y ∈ A× A (4.1)

of order n2 with entries from B(H). Then P = P † = P 2 and Tr P = n, when P is

considered as an operator in H ⊗ K where K = L2 (A× A) . Thus P is a projection of

rank n in an n3-dimensional Hilbert space. Define the state

ρ0 =
1

n
P (4.2)

Theorem 4.1 ρ0 is an extremal state in the convex set C
(

1
n
IH,

1
n2 IK

)
where IH and IK

are the identity operators in H and K respectively. Furthermore, in the range of ρ0 there

does not exist a nonzero product vector of the form u⊗ f, u ∈ H, f ∈ K.

Proof : Observe that ρ0 can be expressed in the block form

ρ0 =
1

n3

[
IH B

B† B†B

]
where B = [Wx, x ∈ A× A, x 6= 0] and rank ρ0 = rank IH = n. Now consider a

hermitian operator L in H and put
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αL =

[
L LB

B†L B†LB

]
.

Suppose that the relative traces of αL in H and K vanish. This would, in particular,

imply

Tr LWx = 0 for all x ∈ A⊗ A.

Since the family
{

1√
n
Wx, x ∈ A× A

}
is an orthonormal basis in B(H) it follows that

L = 0. In other words ρ0 satisfies the conditions of Proposition 2.3 and therefore ρ0 is

an extreme point of the convex set C
(

1
n
IH,

1
n2 IK

)
.

To prove the second part, suppose that there exists a nonzero product vector u ⊗ f

in the range of ρ0. It follows from (4.1) and (4.2) that

P u⊗ f = u⊗ f

or equivalently

1

n2

∑
y∈A×A

f(y)Wyu = f(x)Wxu for all x ∈ A× A.

Thus the right hand side is independent of x and therefore

f(x)Wxu = f(0, 0)u.

Since u⊗f 6= 0 it follows that f(0, 0) 6= 0 and therefore f(x) 6= 0 for every x ∈ A×A. Thus

Cu is a 1 - dimensional invariant subspace for the irreducible family {Wx, x ∈ A× A} .
This is a contradiction.

Remark The last part of Theorem 4.1 implies that the state ρ0 is not separable in the

sense that ρ0 cannot be expressed as
∑

i piαi ⊗ βi, where i runs over a finite index set

S, {pi} is a probability distribution on S, {αi} and {βi} are families of states in H and

K respectively (See [5] ).

Theorem 4.2 Let H, K be Hilbert spaces of dimension m, n respectively and let ρ be

a state in H⊗K such that ρ ∈ C
(

1
m
IH,

1
n
IK

)
. Then
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S(ρ) ≥ | log2m− log2 n|

where S(ρ) denotes the von Neumann entropy of ρ. In particular,

rank ρ ≥ max(m,n)

min(m,n)

Proof. Consider a spectral decomposition of ρ in the form

ρ =
k∑

j=1

pj|Ωj >< Ωj|

where {|Ωj >, 1 ≤ j ≤ k} is an orthonormal set and {pj, 1 ≤ j ≤ k} is a probability

distribution with pj > 0 for every j. In particular, rank (ρ) = k. Let {|er >, 1 ≤ r ≤ m},
{|fs >, 1 ≤ s ≤ n} be orthonormal bases in H, K respectively. Define

P (j, r, s) = pj|〈er ⊗ fs|Ωj〉|2.

Then P (., ., .) can be viewed as a joint probability distribution of three random variables

X, Y, Z assuming values in the sets {1, 2, . . . , k}, {1, 2, . . . ,m}, {1, 2, . . . , n} respectively.

Using the symbol H for the Shannon entropy as well as conditional entropy for random

variables assuming a finite number of values we have

H(XY Z) = H(Y ) +H(XZ|Y ) = H(Z) +H(XY |Z).

By the hypothesis on ρ we conclude that Y and Z are uniformly distributed in {1, 2, . . . ,m}
and {1, 2, . . . , n} respectively. Thus we get

log2m− log2 n = H(Y )−H(Z)

= H(XY |Z)−H(XZ|Y )

≤ H(XY |Z)

≤ H(X|Z)

≤ H(X)

= S(ρ).
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Interchanging Y and Z in this argument and combining the two inequalities we get

S(ρ) ≥ | log2m− log2 n|.

This completes the proof of the first part. We have

S(ρ) = −
k∑

j=1

pj log2 pj ≤ log2 k

which yields the second part.

Remark It is interesting to note that, in view of Theorem 4.2, the extremal state ρ0

constructed in Theorem 4.1 is, indeed, of minimal rank.

We conclude with an example which is of some interest, particularly, in the context

of Theorem 3.1 and Theorem 4.1 with n = 2 which cover the cases C2⊗C2 and C2⊗C4.

Example 4.3 Let H = C2, K = C3 with labeled orthonormal bases {|0 >, |1 >},
{|0 >, |1 >, |2 >} respectively. Suppose ρ0 = 1

2
P whre P is the 2-dimensional projection

in H ⊗ K onto the span of {|00 > +|11 > +i|12 >, |10 > +|01 > −i|02 >}. Using

the ordered orthonormal basis {|00 >, |10 >, |01 >, |11 >, |02 >, |12 >} in H ⊗ K and

looking upon H⊗K as C2 ⊕ C2 ⊕ C2, P can be expressed as a block matrix :

P =
1

3


I2 σ1 σ2

σ1 I2 iσ3

σ2 −iσ3 I2


where σi, i = 1, 2, 3 are the 2× 2 Pauli matrices. Since the trace of any Pauli matrix is 0

it follows that ρ0 ∈ C
(

1
2
I2,

1
3
I3

)
. It is straightforward to verify that there is no product

vector in the range of P. Thus ρ0 is a mixed entangled state with both the marginals

having maximum entropy. If L is a 2 × 2 hermitian matrix such that the marginals of

the operator

TL =


L Lσ1 Lσ2

σ1L σ1Lσ1 σ1Lσ2

σ2L σ2Lσ1 σ2Lσ2


16



in H and K are 0 then it follows that Tr L = Tr Lσ1 = Tr Lσ2 = Tr Lσ3 = 0 and

therefore L = 0. By Proposition 2.4 it follows that ρ0 is an extremal state in C
(

1
2
I2,

1
3
I3

)
.

By Theorem 4.2, ρ0 has minimal rank.
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