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Abstract

The notion of perfect correlations between arbitrary observables, or more generally arbitrary
POVMs, is introduced in the standard formulation of quantum mechanics, and characterized by
several well-established statistical conditions. The transitivity of perfect correlations is proved to
generally hold, and applied to a simple articulation for the failure of Hardy!s nonlocality proof
for maximally entangled states. The notion of perfect correlations between observables and POVMs
is used for defining the notion of a precise measurement of a given observable in a given state. A
longstanding misconception on the correlation made by the measuring interaction is resolved in
the light of the new theory of quantum perfect correlations.
! 2005 Elsevier Inc. All rights reserved.

1. Introduction

It is often stressed that quantum mechanics does not speak of the value of an observa-
ble in a single event, but only speaks of the average value over a large number of events. In
fact, quantum states are characterized as what determine the expectation values of all the
observables. However, quantum correlations definitely describe relations of values of
observables in a single event as typically in the EPR correlation [1]. In the early days of
quantum mechanics, the quantum correlation played a central role in measurement theory
since von Neumann [2] generally described a process of making a perfect correlation be-
tween two systems. In the recent investigations on quantum information [3], the notion
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of quantum correlations naturally plays a key role, as in classical information theory the
amount of information is defined as a measure of statistical correlations for pairs of ran-
dom variables. Nevertheless, we have not had a general notion of quantum correlation; in
those investigations the quantum correlation has rather replaced by the notion of entan-
glement, which is regarded as quantum correlations restricted to those between commut-
ing observables from different subsystems.

The main aim of this paper is to establish the general notion of quantum perfect cor-
relations. It should be stressed that statistical correlation is a state dependent notion,
and it is required to address the problem as to when a pair of observables are considered
to be perfectly correlated in a given state. The operational meaning of this condition is that
those two observables can be jointly measured in that state and that each joint measure-
ment gives the same value, although the value may distribute randomly. In classical prob-
ability theory, it is well accepted that two random variables (observables) are perfectly
correlated if and only if the joint probability of any pair of their different values vanishes.
Thus, we can immediately generalize this notion to pairs of commuting observables based
on the well-defined joint probability distribution of commuting observables. It is
well-known that every entangled (pure) state of a bipartite system has the Schmidt
decomposition that determines naturally a pair of perfectly correlated observables in
respective subsystems. The perfect correlation relevant to the study of entanglement is
as such always those for commuting observables. Nevertheless, we have several
problems that strongly demand the generalization of the notion of perfect correlations
to noncommuting observables.

One of them is the transitivity problem of quantum perfect correlations. Suppose that
commuting observables X and Y are perfectly correlated as well as commuting observables
Y and Z. If X and Z commute, we can easily say that X and Z are perfectly correlated.
However, there are cases where X and Z do not commute, and no existing theory deter-
mines whether X and Z are considered to be perfectly correlated.

There has been a longstanding misconception on statistical correlation in measurement.
In the conventional model of measurement found by von Neumann [2], the measuring
interaction is required to establish two different kinds of perfect correlations: one is be-
tween measured observable before the interaction and the meter observable after the inter-
action, and the other is between the meter observable after the interaction and the
measured observable after the interaction. The first one ensures that the observation of
the meter observable suffices to know the value of the measured observable before the
interaction, and the second one ensures that the measurement leaves the measured system
in the eigenstate pertaining to the measurement result. However, we have been able to
treat only the second correlation, since the Heisenberg operator of the measured observa-
ble before the interaction and the Heisenberg operator of the meter observable after the
interaction do not commute in general. Moreover, there has been a confusion between
the meaning of those two different correlations. Even in the modern approach to measure-
ment theory, the lack of the general theory of quantum perfect correlations has left the
fundamental question unanswered as to when the given observable is precisely measured
in a given state.

This paper introduces the notion of perfect correlations between arbitrary two observ-
ables, and characterizes it by various statistical notions in quantum mechanics. As a result,
the above problems are shown to be answered by simple and well-founded conditions in
the standard formalism of quantum mechanics.
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In Section 2, we introduce the definition of the perfect correlation between two observ-
ables. In Section 3, the condition that two observables are perfectly correlated in a given
state is characterized in terms of well-formulated statistical notions in the standard quan-
tum mechanics. It is immediate from the definition that two perfectly correlated observ-
ables are identically distributed, i.e., having the same probability distribution, but the
converse is not true as seen from the case of two independent observables with identical
distribution. This section considers the question as to what additional condition ensures
that two identically distributed observables are perfectly correlated.

In Section 4, we prove that the perfect correlation between observables in a given state
is transitive and consequently is an equivalence relation between observables. In Section 5,
we consider the joint probability distribution of perfectly correlated observables, and show
that two observables are perfectly correlated if and only if they have joint probability dis-
tribution concentrated on the diagonal. We show that our definition of perfectly correlated
observables in a given state ensures that they are jointly measurable in that state. We also
characterize the quasi-joint probability distribution of perfectly correlated observables. In
Section 6, we consider the perfect correlation between observables in bipartite systems,
and characterize pairs of perfectly correlated observables from two subsystems. We also
apply the transitivity of perfect correlations to a simple explanation for the failure of Har-
dy!s nonlocality proof for the class of maximally entangled states [4].

In Section 7, we consider the perfect correlations between probability operator val-
ued measures (POVMs). We show that any pair of POVMs has a joint dilation to a
pair of observables in an extended system in such a way that the given POVMs are
perfectly correlated if and only if the corresponding observables are perfectly correlat-
ed. In this way, the problem of perfect correlations between POVMs can be reduced to
the problem of perfect correlations between observables, and we extend the character-
ization of perfectly correlations between two observables to those between a POVM
and an observable.

In Section 8, we consider perfect correlations in measurements, and gives the definition
for precise measurements of an observable in a given state, using the notion of perfect cor-
relations between observables and POVMs. A longstanding misconception on the correla-
tion made by the measuring interaction is resolved in the light of the new theory of
quantum perfect correlations. Section 9 concludes the present paper with summary and
some remarks.

2. Basic formulations

Let H be a separable Hilbert space. An observable is a self-adjoint operator densely de-
fined inH and a state is a density operator q onH, or equivalently a positive operator q on
H with unit trace [2]. A unit vector w in H is called a state vector or a vector state defining
the state q = |wæÆw| that is an extreme point (pure state) in the convex set SðHÞ of states on
H. Denote by BðRnÞ the Borel r-field of the Euclidean space Rn and by B (Rn) the algebra
of (complex-valued) bounded Borel functions on Rn. Denote by LðHÞ the algebra of
bounded operators on H and by LðHÞþ the cone of positive operators on H. A positive
operator valued measure [5] is a mapping P from BðRÞ to LðHÞþ such that
Pð
S

jDjÞ ¼
P1

j¼1PðDjÞ in the weak operator topology for any disjoint sequence of Borel
sets D1, D2, . . .. A probability operator valued measure (POVM) [6,7] is a positive operator
valued measure P such that P (R) = I.
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We say that two POVMs P1 and P2 are perfectly correlated in a state q iff

Tr½P1ðDÞP2ðCÞq& ¼ 0 ð1Þ

for any disjoint Borel sets D, C. For any vector state w, Eq. (1) is equivalent to

hP1ðDÞw;P2ðCÞwi ¼ 0. ð2Þ

The following proposition generalizes Eq. (1) to arbitrary pairs of Borel sets D, C.

Proposition 2.1. For any POVMs P1, P2, and any state q, the following conditions are
equivalent.

(i) P1 and P2 are perfectly correlated in q.
(ii) Tr[P1(D)P2(C)q] = Tr[P1(D\C)q] for any D;C 2 B Rð Þ.
(iii) Tr[P1(D)P2(C)q] = Tr[P2(D\C)q] for any D;C 2 B Rð Þ.

Proof. If P1, P2 are perfectly correlated, we have

Tr½P1ðDÞP2ðCÞq& ¼ Tr½P1ðD \ CÞP2ðCÞq& þ Tr½P1ðD n CÞP2ðCÞq&
¼ Tr½P1ðD \ CÞP2ðCÞq&
¼ Tr½P1ðD \ CÞP2ðR n CÞq& þ Tr½P1ðD \ CÞP2ðCÞq&
¼ Tr½P1ðD \ CÞq&

for any D;C 2 BðRÞ. This proves (i) ) (ii). The converse part (ii) ) (i) is obvious, and the
equivalence (i) () (iii) can be proved analogously. h

Let P be a positive operator valued measure. For any Borel function f on R the oper-
ator P (f) is defined by

domðPðf ÞÞ ¼ w 2 H

Z

R

jf ðxÞj2hw; dPðxÞwi < 1
!!!!

"#
;

hw0;Pðf Þwi ¼
Z

R

f ðxÞhw0; dPðxÞwi

for all w 2 dom(P(f)) and w0 2 H; see [8] for comparison with other approaches. For the
identity function id on R, i.e., id (x) = x for all x 2 R, the operator P (idn) is called the nth
moment operator of P. For any real-valued Borel function f on R, the relation

Pf ðDÞ ¼ Pðf '1ðDÞÞ; ð3Þ

where D 2 BðRÞ, defines a unique positive operator valued measure Pf. For any real-val-
ued Borel functions f, g, it is easy to see that P (f ( g) = Pg (f) = Pf ( g (id), where f ( g is
the composition of f and g, i.e., f ( g (x) = f (g (x)) for all x 2 R. For any bounded operator
A on H, the relation

PAðDÞ ¼ AyPðDÞA; ð4Þ

where D 2 BðRÞ, defines a unique positive operator valued measure PA. For any bounded
operator A, B, we have PAB = (PA)B. If P is a POVM, so are Pf and PU whenever U is
isometry.

Now we have the following.
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Theorem 2.2. For any POVMs P1,P2, state q, and unitary operator U on H, the following
conditions are equivalent.

(i) P1 and P2 are perfectly correlated in q.
(ii) Pf

1 and Pf
2 are perfectly correlated in q for any real-valued Borel function f.

(iii) Pf
1 and Pf

2 are perfectly correlated in q for any bounded real-valued Borel function f.
(iv) Pf

1 and Pf
2 are perfectly correlated in q for a bijective Borel function f from R to a Bor-

el set X 2 BðRÞ.
(v) PU

1 and PU
2 are perfectly correlated in U"qU.

Proof. Suppose that P1 and P2 are perfectly correlated in q. Let f be a real-valued Borel
function. We have

Tr½Pf
1ðDÞPf

2ðCÞq& ¼ Tr½P1ðf '1ðDÞÞP2ðf '1ðCÞÞq& ¼ Tr½P1ðf '1ðDÞ \ f '1ðCÞÞq&
¼ Tr½P1ðf '1ðD \ CÞÞq& ¼ Tr½Pf

1ðD \ CÞq&.

Thus, Pf
1 and Pf

2 are perfectly correlated in q. This proves (i))(ii). The implications
(ii))(iii))(iv) are obvious. Suppose (iv). Then, there is a Borel function g such that
g [f (x)] = x for all x 2 R. By the implication (i) ) (ii), two POVMs P1 ¼ Pg(f

1 and
P2 ¼ Pg(f

2 are perfectly correlated in q. This proves (iv) ) (i). The equivalence
(i) () (v) is straightforward from the property of trace and the proof is completed. h

Let X be an observable on H. The spectral measure of X is the projection-valued POVM
EX such that EX (p) = p (X) for any polynomial p. For any Borel function f on R, the oper-
ator f (X) is defined by f (X) = EX (f).

We say that two observables X and Y are perfectly correlated in a state q iff EX and EY

are perfectly correlated in q. From Proposition 2.1, X and Y are perfectly correlated in q if
and only if one of the following equivalent conditions holds:

(i) Tr[EX (D)EY (C)q] = 0 for any disjoint Borel sets D;C 2 BðRÞ.
(ii) Tr[EX (D)EY (C)q] = Tr[EX (D \ C)q] for any D;C 2 BðRÞ.
(iii) Tr[EX (D)EY (C)q] = Tr[EY (D \ C)q] for any D;C 2 BðRÞ.

The following theorem restates Theorem 2.2 for observables.

Theorem 2.3. For any observables X, Y, state q, and unitary operator U on H, the following
conditions are all equivalent.

(i) X and Y are perfectly correlated in q.
(ii) f (X) and f (Y) are perfectly correlated in q for any real-valued Borel function f.
(iii) f (X) and f (Y) are perfectly correlated in q for any bounded real-valued Borel function f.
(iv) f (X) and f (Y) are perfectly correlated in q for a bijective Borel function f from R to a

Borel set X 2 BðRÞ.
(v) U"XU and U"YU are perfectly correlated in U"qU.

From the above theorem, the perfect correlation between two not necessarily bounded
observables X and Y can be reduced to the perfect correlation of a pair of bounded observ-
ables, say, tan'1X and tan'1Y.
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3. Characterizations of perfectly correlated observables

The cyclic subspace of H spanned by an observable X and a state vector w 2 H is the
closed subspace CðX ;wÞ defined by

CðX ;wÞ ¼ the closure of ff ðX Þw 2 Hjf 2 BðRÞg.

Denote by C1ðX ;wÞ the unit sphere of CðX ;wÞ and by PX,w the projection of H onto
CðX ;wÞ. A closed subspace of H is said to be invariant under X iff it is invariant under
all projections EX (D) for D 2 BðRÞ. Since CðX ;wÞ is invariant under X, the projection
PX,w commutes with EX (D) for all D 2 BðRÞ. Then we obtain the following theorem.

Theorem 3.1. For any two observables X and Y on H and any state vector w 2 H, the
following conditions are equivalent.

(i) X and Y are perfectly correlated in w.
(ii) X and Y are perfectly correlated in any / 2 C1ðX ;wÞ.
(iii) EX(D)w = EY(D)w for any D 2 BðRÞ.
(iv) f (X)w = f(Y)w for any f 2 B(R).
(v) f (X)PX,w = f(Y)PX,w for any f 2 B(R).
(vi) PX,w = PY,w and XPX,w = YPY,w.

Proof. Suppose (i) holds. Let D 2 BðRÞ. Then, we have

kEX ðDÞw ' EY ðDÞwk2

¼ kEX ðDÞwk2 ' hEX ðDÞw;EY ðDÞwi ' hEY ðDÞw;EX ðDÞwi þ kEY ðDÞwk2 ¼ 0.

Thus, we have EX (D)w = EY (D)w for every D 2 BðRÞ, and the implication (i) ) (iii) fol-
lows. Suppose (iii) holds. The set of Borel functions f 2 B (R) satisfying f (X)w = f (Y)w
is closed under the linear combination, the uniform convergence, and includes all charac-
teristic functions vD for D 2 BðRÞ, so that f (X)w = f (Y)w holds for every f 2 B (R). Thus,
the implication (iii) ) (iv) follows. Suppose that condition (iv) holds. Then, we have
f (X)g (X)w = f (Y)g (Y)w = f (Y)g (X)w for any f, g 2 B (R). Since every / 2 CðX ;wÞ is a
limit of vectors of the form / = g (X)w for some g 2 B (R), we have f (X)PX,w = g (Y)PX,w.
Thus, the implication (iv) ) (v) follows. Suppose that condition (v) holds. The implication
(v) ) (iv) trivially holds, and hence we have CðX ;wÞ ¼ CðY ;wÞ and PX,w = PY,w. Letting
f = vD in condition (v), we have EX (D)PX,w = EY (D)PY,w, and hence the spectral measures
of the self-adjoint operators XPX,w and YPY,w are the same, so that they are identical.
Thus, the implication (v) ) (vi) follows. Suppose that condition (vi) holds. Let
/ 2 CðX ;wÞ and D;C 2 BðRÞ. By the assumption we have EX (C)PX,w = EY (C)PY,w, so that
we have EX (C)/ = EY (C)/, and hence

hEX ðDÞ/;EY ðCÞ/i ¼ hEX ðDÞ/;EX ðCÞ/i ¼ h/;EX ðD \ CÞ/i.

It follows that X and Y are perfectly correlated in /, and hence the implication (vi) ) (ii)
follows. Since the implication (ii) ) (i) is obvious, the proof is completed. h

It should be noticed that condition (vi) above does not imply the relation Xw = Yw,
since w may not be in the domain of X or Y. However, for any rapidly decreasing f,
i.e., f 2 SðRÞ, we have f (X)w is in the domains of X and Y, and that the self-adjoint exten-
sion of XPX,w ' YPY,w coincides with the zero operator.
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For bounded X and Y, condition (vi) above is equivalent to that X/ = Y/ for all
/ 2 C1ðX ;wÞ, and the later condition means that the observable X ' Y has the definite val-
ue zero in state /, so that it is an interesting question to ask whether the relation

Xw ¼ Yw ð5Þ

ensures that X and Y are perfectly correlated in w. If bounded observables X and Y com-
mute, by multiplying f (X) to the both sides we have Xf (X)w = Yf (X)w for all f 2 B (R) so
that we have XPX,w = YPX,w, and hence X and Y are perfectly correlated in w. Busch et al.
[9] pointed out that Eq. (5) does not ensure that X and Y are identically distributed in w.
Here, we shall show that even unitarily equivalent X and Y satisfying Eq. (5) may fail to be
perfectly correlated. Let X, Y, and w be two 4 · 4 matrices and a four-dimensional column
vector such that

X ¼

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 0

0

BBB@

1

CCCA; Y ¼

1 1 0 0

1 0 0 0

0 0 1 1

0 0 1 1

0

BBB@

1

CCCA; w ¼

1

0

0

0

0

BBB@

1

CCCA.

Then, it is easy to see that X and Y are unitarily equivalent and satisfy Eq. (5). However,
we have Æw|X3|wæ = 4 but Æw|Y3|wæ = 3. Thus, the third moments of X and Y are different,
so that the observables X and Y have different probability distributions in w, and hence
from Proposition 2.1 they cannot be perfectly correlated.

Let X be an observable on H and q a state on H. The cyclic subspace of H spanned by
observable X and state q is the closed subspace CðX ; qÞ defined by

CðX ; qÞ ¼ the closure of ff ðX Þw 2 Hjf 2 BðRÞ; w 2 ranðqÞg. ð6Þ

Then, it is easy to see the following relation

CðX ; qÞ ¼ the closure of
[

w2ranðqÞ
CðX ;wÞ. ð7Þ

In particular, we have CðX ; jwihwjÞ ¼ CðX ;wÞ for any state vector w 2 H. Denote by
C1ðX ; qÞ the unit sphere of CðX ; qÞ and by PX,q the projection of H onto CðX ; qÞ. Since
PX,q = ¤w2ran(q)PX,w, we have [PX,q,E

X (D)] = 0 for all D 2 BðRÞ. Denote by SðX ; qÞ the
space of states supported in CðX ; qÞ, i.e.,

SðX ; qÞ ¼ fr 2 SðHÞj ranðrÞ ) CðX ;qÞg. ð8Þ

It is easy to see that the following conditions are equivalent: (i) r 2 SðX ; qÞ. (ii) PX,qr = r.
(iii) rPX,q = r. (iv) PX,qrPX,q = r.

Then, we obtain the following characterization of perfect correlation in a mixed state.

Theorem 3.2. For any two observables X and Y on H and any state q on H, the following
conditions are equivalent.

(i) X and Y are perfectly correlated in q.
(ii) X and Y are perfectly correlated in any w 2 ran (q).
(iii) X and Y are perfectly correlated in any w 2 C1ðX ; qÞ.
(iv) X and Y are perfectly correlated in any r 2 SðX ; qÞ.
(v) EX(D)q = EY(D)q for any D 2 BðRÞ.
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(vi) f (X)PX,q = f(Y)PX,q for any f 2 B(R).
(vii) PX,q = PY,q and XPX,q = YPY,q.

Proof. Suppose (i) holds. Let D 2 BðRÞ. From Proposition 2.1, we have

kEX ðDÞ ffiffiffi
q

p ' EY ðDÞ ffiffiffi
q

p k2HS
¼ Tr½EX ðDÞq& ' Tr½EX ðDÞEY ðDÞq& ' Tr½EY ðDÞEX ðDÞq& þ Tr½EY ðDÞq& ¼ 0;

where i Æ iHS stands for the Hilbert-Schmidt norm. It follows that we have
EX (D)q = EY (D)q, and hence the implication (i) ) (v) follows. The implications
(v) ) (ii), (ii)) (iii), and (iii) )(vi) follow easily from the implications (iii) ) (i),
(i) ) (ii), and (ii) ) (iv) in Theorem 3.1, respectively. Assume condition (vi). It follows
immediately that f (X)w = f (Y)w for all w 2 ran(q), so that from Eq. (6) we have
CðX ; qÞ ¼ CðY ; qÞ and PX,q = PY,q. Then, by assumption we have EX (D)PX,q = EY (D)PY,q

for all D 2 BðRÞ, and hence we conclude that XPX,q equals YPY,q since their spectral mea-
sures coincides. Thus, the implication (vi) ) (vii) follows. Assume condition (vii). Suppose
r 2 SðX ; qÞ. Then PX,qr = r, so that EX (D)r = EY (D)r and it is easy to see that X and Y
are perfectly correlated in r, and the implication (vii) ) (iv) follows. The implication
(iv) ) (i) trivially holds and the proof is completed. h

For observables with a complete orthonormal family of eigenvectors (discrete observ-
ables), we have the following important characterization of perfectly correlating states.

Theorem 3.3. Two discrete observables X and Y are perfectly correlated in a vector
state w if and only if w is a superposition of common eigenstates of X and Y with
common eigenvalues.

Proof. Suppose that X and Y are perfectly correlated in a state w. Then, CðX ;wÞ is gener-
ated by eigenstates of XPX,w = YPX,w. Thus, w is a superposition of common eigenstates of
X and Y with common eigenvalues. Conversely, suppose that w is a superposition of com-
mon eigenstates of X and Y with common eigenvalues. Then, the subspace S generated by
those eigenstates is invariant under both X and Y and includes w. Thus, CðX ;wÞ ) S, and
X = Y on CðX ;wÞ, and hence from Theorem 3.1, we conclude X and Y are perfectly cor-
related in w. h

We say that two observables X and Y are identically distributed in a state q iff
Tr[EX (D)q] = Tr[EY (D)q] for all D 2 BðRÞ. Then, we have the following.

Theorem 3.4. For any two observables X and Y on H and any state q 2 SðHÞ, the following
conditions are equivalent.

(i) X and Y are perfectly correlated in state q.
(ii) X and Y are identically distributed in any w 2 C1ðX ;qÞ.
(iii) X and Y are identically distributed in any state q 2 SðX ; qÞ.

Proof. Suppose (i) holds. Let D 2 BðRÞ. From Theorem 3.2, we have EX (D)r = EY (D)r
for any r 2 SðX ; qÞ. Thus, (iii) holds, and (i) ) (iii) follows. The implication (iii) ) (ii)
is obvious. Suppose that (ii) holds. Let w 2 C1ðX ; qÞ. Let D, C be disjoint Borel sets in
BðRÞ. Then, EX ðDÞw 2 CðX ; qÞ, and hence
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hEX ðDÞw;EY ðCÞEX ðDÞwi ¼ hEX ðDÞw;EX ðCÞEX ðDÞwi ¼ 0.

Thus, by the Schwarz inequality we have

jhEX ðDÞw;EY ðCÞwij2 6 kEY ðCÞEX ðDÞwk2 ¼ hEX ðDÞw;EY ðCÞEX ðDÞwi ¼ 0.

It follows that (i) holds. Thus, the proof is completed. h

It should also be noticed that even two identically distributed commuting observables X
and Y may fail to satisfy Eq. (5). To see this, suppose that H ¼ K * K for some Hilbert
space K. Let X = A * I and Y = I * A for some bounded operator A on K and w = /
* / for some state vector / 2 K. Then, we have Æw|EX (D)|wæ = Æ/|EA (D)|/
æ = Æw|EY (D)|wæ for all D 2 BðRÞ, and hence they are identically distributed. However,
we have (X ' Y)w = A/ * / ' / * A/, and hence Eq. (5) does not hold unless / is an
eigenvector of A.

4. Transitivity of perfect correlations

We denote by {X = Y} the subspace spanned by all states w 2 H such that X and Y are
perfectly correlated in w, i.e.,

fX ¼ Y g ¼ fw 2 HjhEX ðDÞw;EY ðCÞwi ¼ 0 for all disjoint Borel sets D;Cg.

We shall call {X = Y} the perfectly correlative domain for X and Y. Then, we have

Theorem 4.1. The space {X = Y} is the largest closed subspace K of H satisfying the
following conditions.

(i) K is invariant under X and Y for all D 2 BðRÞ.
(ii) EX(D)w = EY(D)w for all D 2 BðRÞ and w 2 K.

Proof. Assume w2{X = Y}. Then, we have EX (D)EX (C)w = EX (D \ C)w = EY (D \ C)w
= EY (D)EY (C)w = EY (D)EX (C)w. Thus, {X = Y} is invariant under X, and similarly
under Y. The space {X = Y} satisfies condition (ii) obviously from Theorem 3.1. Assume
that K satisfies conditions (i) and (ii). Let w 2 K. Then, from (ii) we have w2{X = Y}, and
hence {X = Y} is the largest. h

From the above theorem, w2{X = Y} if and only if CðX ;wÞ ) fX ¼ Y g. The following
theorem shows that the perfect correlation in a given state is an equivalence relation be-
tween observables.

Theorem 4.2. For any observables X, Y, Z, we have fX ¼ Xg ¼ H, {X = Y} = {Y = X},
and {X = Y} \ {Y = Z} ˝ {X = Z}.

Proof. The relations fX ¼ Xg ¼ H and {X = Y} = {Y = X} are obvious. Let
w 2 {X = Y} \ {Y = Z} and f 2 B (R). Then, we have f (X)w = f (Y)w and f (Y)w = f (Z)w,
so that f (X)w = f (Z)w. Since f is arbitrary, we have w 2 {X = Z}. Thus, we conclude
{X = Y} \ {Y = Z} ˝ {X = Z}. h

We denote by X ¼ Y½ &½ & the projection of H onto {X = Y}. From Theorem 4.1 we have

EX Dð Þ ' EY Dð Þ
% &

X ¼ Y½ &½ & ¼ 0 ð9Þ
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for all D 2 BðRÞ.

Theorem 4.3. For any two observables X and Y on H and any state q on H, the following
conditions are equivalent.

(i) X and Y are perfectly correlated in q.
(ii) ran (q) ˝ {X = Y}.
(iii) X ¼ Y½ &½ &q = q.
(iv) q X ¼ Y½ &½ & = q.

Proof. Suppose that X and Y are perfectly correlated in a state q. Let w 2 ran(q) n {0}.
Then, w ¼ ffiffiffi

q
p

/ for some vector / 2 H. For any disjoint D;C 2 BðRÞ we have

hEX ðDÞw;EY ðCÞwi ¼ k/k2h/=k/k; ffiffiffi
q

p
EX ðDÞEY ðCÞ ffiffiffi

q
p

/=k/ki
6 k/k2Tr½ ffiffiffi

q
p

EX ðDÞEY ðCÞ ffiffiffi
q

p & ¼ 0.

Thus, w 2 {X = Y}, so that ran(q) ˝ {X = Y}, and the implication (i) ) (ii) follows. The
implication (ii) ) (iii) is obvious. Suppose X ¼ Y½ &½ &q = q. From Eq. (9), we have
EX (D)q = EY (D)q and hence X and Y are perfectly correlated in q, and the implication
(iii) ) (i) follows. The equivalence (iii) () (iv) follows immediately from taking the ad-
joint of the both sides of relation (iii) or (iv). h

For two observables X, Y, and a state q, we denote by X ”q Y iff X and Y are perfectly
correlated in q. The following theorem shows that the relation ”q is an equivalence relation
between observables and in particular it is transitive.

Theorem 4.4. For any observables X, Y, Z, and state q, we have (i) X ” qX, (ii) if X ”q Y
then Y ”q X, and (iii) if X ”q Y and Y ”q Z then X ”q Z.

Proof. From Theorems 4.2 and 4.3, statements (i) and (ii) follow easily. Suppose X ”q Y
and Y ”q Z. Then, from Theorem 4.3 we have ran(q) ˝ {X = Y} and ran (q) ˝ {Y = Z},
and hence ran(q) ˝ {X = Y} \ {Y = Z}. From Theorem 4.2, we have ran (q) ˝ {X = Z},
so that we have shown X ”q Z, and statement (iii) follows. h

5. Joint distributions

5.1. Perfect correlations and joint probability distributions

LetX andY be two observables onH.We say thatX andY commute on a closed subspace
K ) H iff K is invariant under X and Y and [EX (D), EY (C)]w = 0 for all D;C 2 BðRÞ and
w 2 K. The commutative domain of X and Y is defined to be the set com(X,Y) of those vec-
torsw 2 H such that [EX (D),EY (C)]w = 0 for allD;C 2 BðRÞ. It is clear that ifX andY com-
mute onK thenK ) comðX ; Y Þ. It can be easily seen that com(X, Y) is invariant underX and
Y; in fact, if w 2 com(X, Y), we have EX (D1)E

Y (D2)E
X (D3)w = EX (D1)E

X (D3)
EY (D2)w = EX (D1 \ D3)E

Y (D2)w = EY (D2)E
X (D1 \ D3)w = EY (D2)E

X (D1)E
X (D3)w, so

that EX (D3)w 2 com(X, Y). Thus, com(X, Y) is the largest closed subspace on which X
andY commute; see Ylinen [10]. LetCX,Y denote the projection ofH onto com(X, Y). Then,
we have
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½EX ðDÞ;EY ðCÞ&CX ;Y ¼ 0 ð10Þ

for all D;C 2 BðRÞ. The following theorem generalizes Yilnen!s theorem [10] on character-
ization of pure states in com(X, Y) to mixed states.

Theorem 5.1. For any state q, the following conditions are equivalent.

(i) CX,Yq = q.
(ii) There is a spectral measure E on BðR2Þ such that E(D · C)q = EX(D) " EY(C)q for all

D;C 2 BðRÞ.
(iii) The function D · C ´ Tr[EX (D) " EY (C)q] on B Rð Þ + B Rð Þ extends to a probability

measure on B R2
' (

.
(iv) EX(D)EY(C)q = EY(C)EX(D)q for all D;C 2 BðRÞ.

Proof. Since XCX,Y and YCX,Y are commuting self-adjoint operators, there is another self-
adjoint operator Z and two real-valued Borel functions f, g such that XCX,Y = f (Z) and
YCX,Y = g (Z) [2]. Let E be the spectral measure on BðR2Þ defined by E (D · C) =
EZ (f'1 (D) \ g'1 (C)) for all D;C 2 BðRÞ. Let D;C 2 BðRÞ. We have E (D · C)CX,Y

= EZ (f'1 (D))EZ (g'1(C))CX,Y = EX (D)EY (C)CX,Y = EX (D) " EY (C)CX,Y. Thus, it is easy
to see that the implication (i) ) (ii) follows. The implication (ii) ) (iii) follows obviously.
Assume condition (iii). Let l be the probability measure on BðR2Þ such that
l (D · C) = Tr[EX (D) " EY (C)q]. Let P = EY (C) ' EX (D) " EY (C) ' EX (R n D) " EY (C).
Then, P is a projection and EX (D)P = EX (D)EY (C) ' EX (D) " EY (C). By the countable
additivity of l, we have Tr½ðP ffiffiffi

q
p ÞyðP ffiffiffi

q
p Þ& ¼ Tr½Pq& ¼ lðR + CÞ ' lðD + CÞ ' lððR n DÞ+

CÞ ¼ 0. Thus, we have P
ffiffiffi
q

p ¼ 0 so that EX (D)Pq = 0, and hence we have EX (D)
EY (C)q = EX (D)"EY (C)q. By symmetry, we also obtain EY (C)EX (D)q = EX (D) " EY (C)q.
Thus, the implication (iii) ) (iv) follows. Assume condition (iv). Then, we have qw 2
com(X, Y) for all w 2 H. Thus, CX,Yqw = qw for all w 2 H, and hence the implication
(iv) ) (i) follows. h

Observables X and Y are said to be compatible in a state q iff CX,Yq = q, and they are
said to have the joint probability distribution in q iff there is a probability measure lX ;Y

q on
BðR2Þ satisfying

lX ;Y
q ðD + CÞ ¼ Tr½EX ðDÞ ^ EY ðCÞq& ¼ Tr½EY ðCÞEX ðDÞq& ¼ Tr½EX ðDÞEY ðCÞq& ð11Þ

for all D;C 2 BðRÞ. Theorem 5.1 shows that X and Y have the joint probability distribu-
tion in q if and only if they are compatible in q.

Two observables X and Y are called jointly measurable in a state q iff they have the joint
probability distribution lX ;Y

q and satisfy the following relations

lX ;Y
q ðD + CÞ ¼ Tr½EX ðDÞEY ðCÞEX ðDÞq&; ð12Þ

lX ;Y
q ðD + CÞ ¼ Tr½EY ðCÞEX ðDÞEY ðCÞq& ð13Þ

for any D;C 2 B Rð Þ. The above relations ensure that the theoretical joint probability of
the event ‘‘X 2 D and Y 2 C’’ is obtained as the joint probability of outcomes of the suc-
cessive projective measurements of projections EX (D) and EY (C) irrespective of the order
of the measurements [11]. Moreover, for discrete observables X and Y, the above relation
ensures that the the joint probability distribution of the outcomes of the successive projec-
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tive measurements of observables X and Y coincides with the joint probability distribution
lX ;Y
q irrespective of the order of the measurements.

Theorem 5.2. Every pair of observables X and Y compatible in a state q is jointly measurable
in the state q.

Proof. The assertion follows immediately from Theorem 5.1. h

Denote by D the diagonal set in R2, i.e., D = {(x, y) 2 R2 j x = y}.

Theorem 5.3. Two observables X and Y are perfectly correlated in a sate q if and only if X
and Y are compatible in q and the joint probability distribution is concentrated in the diagonal
set, i.e., lX ;Y

q ðR nDÞ ¼ 0.

Proof. If x „ y, there is a rational number q such that x < q < y or y < q < x, and hence it
is easy to see that

R nD ¼
[

q2Q
ð'1; qÞ + ðq;1Þ [

[

q2Q
ðq;1Þ + ð'1; qÞ; ð14Þ

where Q stands for the set of rational numbers. Suppose that X and Y are perfectly cor-
related in q. Then, we have EX (D)EY (C)q = EX (D \ C)q = EY (D \ C)qEY (C)EY (D) =
EY (D)EX (D)q, and hence X and Y are compatible in q. Accordingly, the joint probabil-
ity distribution satisfies lX ;Y

q '1; qð Þ + q;1ð Þð Þ ¼ lX ;Y
q q;1ð Þ + '1; qð Þð Þ ¼ 0; so that

lX ;Y
q R nDð Þ ¼ 0. Conversely, suppose that X and Y are compatible in q and

lX ;Y
q R nDð Þ ¼ 0. Let D;C 2 B Rð Þ. In general, we have (D · C) \ D = [R · (D \ C)] \ D.

Thus, if D \ C = ;, we have

Tr½EX ðDÞEY ðCÞq& ¼ lX ;Y
q ððD + CÞ \DÞ ¼ lX ;Y

q ½R + ðD \ CÞ& \Dð Þ ¼ 0; ð15Þ

so that X and Y are perfectly correlated in q. h

Let e > 0. Let , , , <l'1 < l0 < l1 < , , , be a partition of the real line R such that
lj + 1 ' lj < e for all j. Let Xe and Ye be e approximations of observables X and Y defined
by Xe =

P
j2ZkjE

X(Dj) and Ye =
P

j2ZkjE
Y (Dj), where Dj = [lj, lj+1) and kj 2 Dj. If X and Y

are discrete observables, there are e approximations Xe and Ye such that X = Xe and
Y = Ye. From Theorems 5.2 and 5.3 we conclude that two observables X and Y perfectly
correlated in a state q have the joint probability distribution concentrated in the diagonal
set and that each instance of the successive projective measurements of any e approxima-
tions Xe and Ye gives the same output irrespective of the order of the measurements for any
e > 0.

5.2. Perfect correlations and quasi-probability distributions

In [12], Urbanik introduced the following formulation for the quasi-joint probability
distribution for any pair of observables, generalizing the quasi-joint probability distribu-
tion of the position and the momentum first studied by Wigner [13] and Moyal [14]. Let l
be a probability measure on BðR2Þ. To any pair of real numbers x, y there corresponds the
family of lines Sa;b

t given by the equation ax + by = t, where t 2 R. Letting for every Borel
subset D ˝ R
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la;bðDÞ ¼ l
[

t2D
Sa;b
t

 !

ð16Þ

we obtain a probability measure on R. It is well-know that l is determined uniquely by the
family of probability measures la,b. We suppose that for all pair of real numbers a, b the
linear combinations aX + bY are self-adjoint operators onH. Consequently, for every pair
a, b 2 R and every state vector w the probability distribution of aX + bY is defined by

laXþbY
w ðDÞ ¼ hw;EaXþbY ðDÞwi ð17Þ

for all D 2 B Rð Þ. Given a state vector w, a probability measure l on R2 is said to be the
joint probability distribution of observables X and Y iff la,b is equal to laXþbY

w . The joint
probability distribution so defined is uniquely determined, provided it exists. We shall de-
note by mX ;Y

w the joint probability distribution of X, Y in w. We also denote by Uw
a;b the char-

acteristic function of the probability distribution laXþbY
w :

Uw
a;bðtÞ ¼ hw; eitðaXþbY Þwi

for all t 2 R. Then, from Bochner!s theorem it is easy to see that observables X and Y have
the joint probability distribution in a vector state w 2 H if and only if the function Uw

t;sð1Þ
of two variable t, s is a continuous positive definite function on R2.

Theorem 5.4. For any observables X, Y and any state vector w, the following conditions are
equivalent.

(i) X and Y are perfectly correlated in w.
(ii) U/

t;sð1Þ ¼ U/
tþs;0ð1Þ for any t, s 2 R and / 2 C1ðX ;wÞ

(iii) U/
t;0ð1Þ ¼ U/

0;tð1Þ for any t 2 R and / 2 C1ðX ;wÞ.

Proof. Assume (i) holds. Then, we have XPX,w = YPX,w, so that ei(tX + sY)PX,w = eitX

eisYPX,w = eitXeisXPX,w = ei (t + s)XPX,w. Let / 2 C1 X ;wð Þ. Then, we have U/
t;s 1ð Þ ¼

h/; ei tXþsYð ÞPX ;w/i ¼ h/; ei tþsð ÞX/i, and hence the implication (i) ) (ii) follows. The implica-
tion (ii) ) (iii) is obvious. Assume (iii) holds. Then, we have

h/; eitX/i ¼ h/; eitY/i

for all t 2 R. It follows that X and Y are identically distributed in /. Since / 2 C1ðX ;wÞ is
arbitrary, the implication (iii) ) (i) follows from Theorem 3.4. h

Our approach is more coherent with the following definition of ‘‘characteristic func-
tions.’’ We define a function Ww

a;b on R by

Ww
a;bðtÞ ¼ he'itaXw; eitbYwi

for all t 2 R. It is easy to see that Ww
a;0 tð Þ ¼ Uw

a;0 tð Þ and Ww
0;a tð Þ ¼ Uw

0;a tð Þ for all a,b,t 2 R.
Then, we have

Theorem 5.5. For any observables X, Y and any state vector w, the following conditions are
equivalent.

(i) X and Y are perfectly correlated in w.
(ii) Ww

t;sð1Þ ¼ Ww
tþs;0ð1Þ for any t, s 2 R.
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Proof. Suppose (i) holds. From Theorem 3.1 we have eisYw = eisXw, and hence

Ww
t;sð1Þ ¼ he'itXw; eisYwi ¼ he'itXw; eisXwi ¼ Uw

tþs;0ð1Þ

for any t, s 2 R. Suppose (ii) holds. We have

keitXw ' eitYwk2 ¼ 2 ' 2ReheitXw; eitYwi ¼ 2 ' 2ReW't;tð1Þ ¼ 0.

Thus, we have eitXw = eitYw for any t 2 R. Since the von Neumann algebra generated by
all eitX with t 2 R coincides with that of all f (X) with f 2 B (R), the set of Borel functions f
satisfying f (X)w = f (Y)w includes B (R), and the implication (ii) ) (i) follows. h

6. Perfect correlations and entanglement

6.1. Bipartite perfect correlations

The notion of perfect correlation in quantum theory was discussed first by von Neu-
mann [2] to establish a quantum mechanical description of a process of measurement
and is closely related to the notion of entanglement recently discussed quite actively in
the field of quantum information [3]. In what follows we shall discuss some examples in
these fields.

Let K1 and K2 be two Hilbert spaces and suppose H ¼ K1 * K2. Every state vector w
has two orthonormal sequences {/j} and {nj} such that

w ¼
X

j

ffiffiffiffi
pj

p
/j * nj; ð18Þ

where pj > 0 and
P

j pj = 1 [2]. The above decomposition is called the Schmidt decomposi-
tion of w. Then, the amount of entanglement [3] of w is defined by

EðwÞ ¼ '
X

j

pj log pj. ð19Þ

Let q1 = Tr2|wæÆw| and q2 = Tr1|wæÆw|, where Trl stands for the partial trace over Kl for
l = 1, 2. Then, E (w) = S (q1) = S (q2), where S stands for the von Neumann entropy,
i.e., S (ql) = 'Tr[ql logql] [2]. Let X and Y be observables on H defined by X =

P
jkj|/jæÆ/j|

and Y=
P

jkj|njæÆnj| with nondegenerate eigenvalues {kj}. Then, we have
hEX*I kj

) *' (
w;EI*Y kkf gð Þwi ¼ ffiffiffiffiffiffiffiffipjpk

p h/j * nj;/k * nki ¼ dj;kpj, and hence we can conclude
that X * I and I * Y are perfectly correlated in w.

Theorem 6.1. Suppose H ¼ K1 * K2 with dim Hð Þ < 1. Let w be a state on H. For any two
observables X on K1 and Y on K2, the observables X * I and I * Y are perfectly correlated in
w if and only if there is a pair of orthonormal basis {/j} of K1 and {nj} of K2 and a sequence
of nonzero real numbers k1, . . . , kn such that w has the Schmidt decomposition
w ¼

Pn
j¼1

ffiffiffiffipj
p /j * nj with pj > 0 for all j = 1, . . . , n, and that X/j = kj/j and Ynj = kjnj for

all j = 1, . . . , n.
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Proof. Suppose that X * I and I * Y are perfectly correlated in w.Then, by Theorem
3.3 the state w is a superposition of common eigenstates with common eigenvalues
l1, . . . , lm of X and Y. Let wk ¼ EX lkf gð Þ * EY lkf gð Þ½ &w= ffiffiffiffiffiqk

p
, where iWki2 = 1 for

all k = 1, . . . , m.We have w ¼
Pm

k¼1

ffiffiffiffiffi
qk

p
wk with qk > 0 and

Pm
k¼1qk ¼ 1.Let

wk ¼
Ps kð Þ

l¼1

ffiffiffiffiffiffiffi
r kð Þ
l

q
/ kð Þ

l * n kð Þ
l be a Schmidt decomposition of wk.Then,

X * Ið Þwk ¼
Ps kð Þ

l¼1

ffiffiffiffiffiffiffi
r kð Þ
l

q
X/ kð Þ

l * n kð Þ
l and X * Ið Þwk ¼

Ps kð Þ
l¼1

ffiffiffiffiffiffiffi
r kð Þ
l

q
lk/

kð Þ
l * n kð Þ

l .Since
n kð Þ
1 ; . . . ; n kð Þ

s kð Þ are linearly independent, we have X/ kð Þ
l ¼ lk/

kð Þ
l , and similarly we have

Y n kð Þ
l ¼ lkn

kð Þ
l .Let kj = lk if

Pk'1
l¼1 s lð Þ < j 6Pk

l¼1s lð Þ, let /j ¼ / kð Þ
l , nj ¼ n kð Þ

l ,
ffiffiffiffipj

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
qkr

kð Þ
l

q
if j ¼ l þ

Pk'1
l¼1 s lð Þ, and let n ¼

Pm
k¼1s kð Þ. Then, we have a Schmidt

decomposition w ¼
Pn

j¼1
ffiffiffiffipj

p /j * nj with the desired properties. The converse part
is obvious from the discussion preceding the present theorem, and the proof is
completed. h

6.2. Nonlocality without inequality

Let us consider the case where H ¼ K1 * K2 and Kj ffi C2 for j = 1, 2. Let U, D be two
observables on C2 having eigenvalues 1 and 0. Let U1 = U * I, D1 = D * I, U2 = I * U,
and D1 = I * D. Hardy [4] showed that any state vector w 2 H shows nonlocality if it sat-
isfies

PwðU 1 ¼ 0;U 2 ¼ 1Þ ¼ 0; ð20Þ
PwðU 1 ¼ 1;D2 ¼ 0Þ ¼ 0; ð21Þ
PwðD1 ¼ 1;U 2 ¼ 0Þ ¼ 0; ð22Þ
PwðD1 ¼ 1;D2 ¼ 0Þ > 0; ð23Þ

where Pw (A = a, B = b) = ÆEA ({a})w, EB ({b})wæ for A = U1, D1, and B = U2, D2, and
a, b = 0, 1, and showed that actually we can find such observables U and D for any state
w unless w is a product state or a maximally entangled state. This failure of Hardy!s non-
locality proof for the class of maximally entangled states has been explained by Cereceda
[15] as follows: the perfect correlation for pairs (U1, U2), (U1, D2), and (D1, U2) necessarily
entails perfect correlation for the pair (D1, D2). Now, we shall show that Cereceda!s argu-
ment can be considerably simplified by appealing to the general property of the transitivity
of perfect correlations.

Let w be a general state vector in H. Then, we have a Schmidt decomposition of w such
that

w ¼ ffiffiffiffiffi
p1

p
n1 * g1 þ ffiffiffiffiffi

p2
p

n2 * g2. ð24Þ

The numbers 0 6 p2 6 p1 are uniquely determined with p1 + p2 = 1, and if p1 „ 1/2, 1, the
vectors n1 * g1 and n2 * g2 are uniquely determined up to constant factors. The essential
part of Hardy!s proof of nonlocality is that if 1/2 < p1 < 1, we can always find observables
U and D such that U „ D while they satisfy Eqs. (20)–(23). Now, suppose that w is max-
imally entangled, i.e., p1 = 1/2. We shall show that Eq. (20) leads to
Pw (U1 = 1, U2 = 0) = 0. Let {n0, n1} be an orthonormal basis such that U = |n1æÆn1|.
Expanding w in the basis {nj * nk}j,k = 0,1, we have w=

P
j,kcjknj * nk. Then, we have
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Pw (U1 = j, U2 = k) = |cjk|
2 for all j, k = 0, 1. From Eq. (20), we have c01 = 0, and hence we

have

q1 ¼Tr2jwihwj
¼jc00j2jn0ihn0j þ c00c.

10jn0ihn1j þ c10c.
00jn1ihn0j þ ðjc10j2 þ jc11j2Þjn1ihn1j.

Since S (q1) = log 2, we have q1 = I1/2, and hence |c00|
2 = 1/2 and c10c.

00 ¼ 0, so that we
have Pw (U1 = 1, U2 = 0) = |c10|

2 = 0. Thus, Eq. (20) leads to U1 ”w U2. Similarly, Eq.
(21) leads to U1 ”w D2, and Eq. (22) leads to D1 ”w U2. Thus, by the transitivity of perfect
correlation, we conclude D1 ”w D2, or Pw (D1 = j, D2 = k) = 0 if j „ k, and this contradicts
Eq. (23).

7. Characterizations of perfectly correlated POVMs

7.1. Joint dilations of POVMs

For any POVMP, there is a triple ðK; n; LÞ, called a Naimark-Holevo dilation ofP, con-
sisting of a separable Hilbert space K, a state vector n 2 K, and an observable L on H * K
satisfying

hw0;PðDÞwi ¼ hw0 * n;ELðDÞðw * nÞi ð25Þ

for any w;w0 2 H and D 2 BðRÞ [16]. We now extends the above notion to any pair of
POVMs. A joint dilation of POVMs P1, P2 is a quadruple ðK; n;X ; Y Þ consisting of a sep-
arable Hilbert space K, a state vector n 2 K, and observables X, Y on H * K, satisfying

hP1ðDÞw0;P2ðCÞwi ¼ hEX ðDÞðw0 * nÞ;EY ðCÞðw * nÞi ð26Þ

for all D;C 2 BðRÞ and w;w0 2 H. In this case, we have

Tr½P1ðDÞP2ðCÞq& ¼ Tr½EX ðDÞEY ðCÞðq * jnihnjÞ& ð27Þ

for all D;C 2 BðRÞ and q 2 H. The existence of the joint dilations is given in the following.

Theorem 7.1. Any pair of POVMs has a joint dilation of them.

Proof. Let P1, P2 be a pair of POVMs. Let ðKj; nj; LjÞ be a Naimark-Holevo dilation of
Pj for j = 1, 2. Let /1, /2, . . . be an arbitrary orthonormal basis of H. Let gðjÞ

1 ; gðjÞ
2 ; . . . be

an orthonormal basis of Kj such that gðjÞ
1 ¼ nj for j = 1, 2. Then, by repeated uses of the

Parceval identity, for any w;w0 2 H and D;C 2 BðRÞ we have

hP1ðDÞw0;P2ðCÞwi ¼
X

k

hP1ðDÞw0;/kih/k;P2ðCÞwi

¼
X

k

hEL1ðDÞðw0 * n1Þ;/k * n1ih/k * n2;EL2ðCÞðw * n2Þi

¼
X

k

hðEL1ðDÞ * I2Þðw0 * n1 * n2Þ;/k * n1 * n2i

+ h/k * n1 * n2; ðEL2ðCÞ * I1Þðw * n1 * n2Þi
¼
X

k;l;m

hðEL1ðDÞ * I2Þðw0 * n1 * n2Þ;/k * gð1Þ
l * gð2Þ

m i

+ h/k * gð1Þ
l * gð2Þ

m ; ðEL2ðCÞ * I1Þðw * n1 * n2Þi
¼ hðEL1ðDÞ * I2Þðw0 * n1 * n2Þ; ðEL2ðCÞ * I1Þðw * n1 * n2Þi;
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where Ij is the identity operator on Kj. Thus, we have a joint dilation
ðK1 * K2; n1 * n2; L1 * I2; L2 * I1Þ. h

Using joint dilations, perfect correlations between POVMs are reduced to those be-
tween observables.

Theorem 7.2. For any joint dilation K; n;X ; Yð Þ of a pair of POVMs P1, P2, the POVMs
P1 and P2 are perfectly correlated in a state q 2 S Hð Þ if and only if X and Y are perfectly
correlated in q * |næÆn|. In this case, we have

P1ðf Þq ¼ P2ðf Þq ð28Þ

for any f 2 B(R).

Proof. Let ðK; n;X ; Y Þ be a joint dilation of P1 and P2. Then, from Eq. (27) it is easy to
see that P1 and P2 are perfectly correlated in q if and only if so are X and Y in q * |næÆn|.
In this case, from Theorem 3.2 we have

EX ðDÞq * jnihnj ¼ EY ðDÞq * jnihnj

for any D 2 BðRÞ. Note thatP1ðDÞ ¼ V y
nE

X ðDÞV n andP2ðDÞ ¼ V y
nE

Y ðDÞV n for all D, where
Vnw = w * n for any w 2 H. Let w 2 H. We have P1ðDÞqw ¼ V y

nE
X ðDÞV nqw ¼

V y
nE

X ðDÞðqw * nÞ ¼ V y
nE

Y ðDÞðqw * nÞ ¼ V y
nE

X ðDÞV nqw ¼ P2ðDÞqw, and by the standard
argument we have P1 (f)qw = P2 (f)qw for any f 2 B (R). Since w is arbitrary, we obtain
Eq. (28). h

7.2. Perfect correlations between observables and POVMs

For any observable X and POVM P, we say that X and P are perfectly correlated in a
state q iff EX and P are perfectly correlated in q. Now, we extend Theorem 3.2 to arbitrary
pair of an observable and a POVM.

Theorem 7.3. For any observable X, any POVM P, and any state q 2 S Hð Þ, the following
conditions are equivalent.

(i) X and P are perfectly correlated in q.
(ii) X and P are perfectly correlated in any state r 2 SðX ; qÞ.
(iii) EX(D)q = P (D)q for any D 2 BðRÞ.
(iv) f (X)q = P (f)q for any f 2 B (R).
(v) f (X)PX,q = P (f)PX,q for any f 2 B (R).

Proof. The implication (i) ) (iv) follows from Theorem 7.2. The implication (iv) ) (iii) is
obvious. The implication (iii) ) (i) follows from the relations

Tr½EX ðDÞPðCÞq& ¼ Tr½EX ðDÞEX ðCÞq& ¼ Tr½EX ðD \ CÞq&; ð29Þ

for any D;C 2 B Rð Þ. Now, we shall show the implications (i) ) (v) ) (ii) ) (i). Sup-
pose that condition (i) holds. Let K; n; Lð Þ be a Naimark-Holevo dilation of P. Then,
it is easy to see that K; n;X * I ; Lð Þ is a joint dilation of EX and P. It follows from the
assumption and Theorem 7.2 that X * I and L are perfectly correlated in q * |næÆn|,
and hence
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f ðX Þqw * n ¼ f ðLÞðqw * nÞ ð30Þ

for any f 2 B (R) and w 2 H. Let / 2 H. Then, we have f (X)g (X)qw * n =
f (L)g (L) (qw * n) = f (L) (g (X)qw * n) for any f, g 2 B (R). Thus, we have

f ðX ÞgðX Þqw ¼ V y
nðf ðX ÞgðX Þqw * nÞ ¼ V y

nf ðLÞðgðX Þqw * nÞ
¼ V y

nf ðLÞV ngðX Þqw.

Since the vector of the form g (X)qw with g 2 B(R), w 2 H spans CðX ; qÞ, we obtain

f ðX ÞPX ;q ¼ V y
nf ðLÞV nPX ;q;

and hence the implication (i) ) (v) follows. Suppose that condition (v) holds. Let
r 2 SðX ; qÞ and D;C 2 BðRÞ. Then, PX,qr = r and we have EX (C)r = P (C)r. Thus,

Tr½EX ðDÞPðCÞr& ¼ Tr½EX ðDÞEX ðCÞr& ¼ Tr½EX ðD \ CÞr&.

It follows that X and Y are perfectly correlated in r, and hence the implication (v) ) (ii)
follows. Since the implication (ii) ) (i) is obvious, the proof is completed. h

8. Perfect correlations in measurements

8.1. Quantum instruments and measuring processes

A measuring process for H is defined to be a quadruple ðK; n;U ;MÞ consisting of a sep-
arable Hilbert space K, a state vector n in K, a unitary operator U on H * K, and an ob-
servable M on K [17]. It is a plausible hypothesis in the theory of measurement that to any
measuring apparatus A (x) with output variable x for a system S described by a Hilbert
space H, there corresponds a measuring process ðK; n;U ;MÞ such that K describes the
probe P prepared in n just before the measurement, U describes the time evolution of
the composite system S + P during the measuring interaction, and that M describes the
meter observable to be actually observed just after the measuring interaction [17–
20,11,21]. Then, the probability distribution of the output x on input state q is given by

Prfx 2 Dk qg ¼ Tr½ðI * EMðDÞÞUðq * jnihnjÞU y&; ð31Þ

and the conditional output state q{x 2 D} of the apparatus on input state q given the out-
come x 2 D is described by

qfx2Dg ¼ TrK½ðI * EMðDÞÞUðq * jnihnjÞU y&
Tr½ðI * EMðDÞÞUðq * jnihnjÞU y&

; ð32Þ

where TrK stands for the partial trace over K.
Two measuring apparatuses A (x), A (y), or corresponding measuring processes are

called statistically equivalent iff they have the same output distributions and the same con-
ditional output states on each input state, i.e., Pr{x 2 Diq} = Pr{y 2 Diq} and
q{x2D} = q{y 2 D} for all q 2 S Hð Þ and D 2 B Rð Þ. The statistical equivalence classes of
all the measuring processes are characterized by completely positive map valued measures
as follows.

Denote by scðHÞ the space of trace class operators on H and by LðscðHÞÞ the space of
bounded linear transformations on scðHÞ. A linear transformation T 2 LðscðHÞÞ is called
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completely positive iff T * idn 2 LðscðH * CnÞÞ is a positive transformation for any posi-
tive integer n. Denote by CPðscðHÞÞ the space of completely positive maps on scðHÞ.
An instrument is a countably additive normalized completely positive map valued measure
from BðRÞ to LðscðHÞÞ, i.e., a mapping I : BðRÞ ! CPðscðHÞÞ satisfying that IðRÞ is
trace-preserving and

P1
j¼1IðDjÞ ¼ IðRÞ in the strong operator topology for any disjoint

Borel sets D1, D2, . . . such that ¨jDj = R [17].
For any instrument I and state q, the relation

lI
qðDÞ ¼ Tr½IðDÞq& ð33Þ

defines a probability measure on BðRÞ called the output distribution of I on input state q,
and the state

IðDÞq
Tr½IðDÞq& ð34Þ

is called the output state of I on input state q given D [22]. The dual map of IðDÞ is the
linear transformation IðDÞ. on LðHÞ defined by

Tr½ðIðDÞ.AÞq& ¼ Tr½AIðDÞq& ð35Þ

for all A 2 LðHÞ, q 2 scðHÞ, and D 2 BðRÞ. Then, IðDÞ. is a normal completely positive
map on LðHÞ [23] and especially IðRÞ. is unit-preserving. The relation

PI ðDÞ ¼ IðDÞ.I ; ð36Þ

where D 2 BðRÞ defines a POVM, called the POVM of I , which satisfies

lI
qðDÞ ¼ Tr½PI ðDÞq& ð37Þ

for all D 2 BðRÞ and q 2 SðHÞ.
For any measuring process M ¼ ðK; n;U ;MÞ, the relation

IMðDÞq ¼ TrK½ðI * EMðDÞÞUðq * jnihnjÞU y&; ð38Þ

where q 2 SðHÞ and D 2 BðRÞ, defines an instrument IM, called the instrument of M.
Then, the POVM of I is called the POVM of M and denoted by PM. We have

PMðDÞ ¼ IMðDÞ.I ¼ TrK½U yðI * EMðDÞÞUðI * jnihnjÞ& ð39Þ

for all D 2 BðRÞ. For all q 2 SðHÞ and D 2 BðRÞ, we have

Prfx 2 Dk qg ¼ Tr½IMðDÞq& ¼ Tr½PMðDÞq& ð40Þ

and

qfx2Dg ¼ IðDÞq
Tr½IðDÞq&

; ð41Þ

provided Tr½IðDÞq& > 0. Thus, two measuring processes are statistically equivalent if and
only if they have the same instrument.

Conversely, it has been proved in [17] that for any instrument I , there exists a measur-
ing process M ¼ ðK; n;U ;MÞ such that I ¼ IM. Thus, every instrument corresponds at
least one measuring process, and therefore the instruments are in one-to-one correspon-
dence with the statistical equivalence classes of measuring processes.
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8.2. Precise measurements of observables

Once the notion of measurement has been fully generalized by the notion of instru-
ments, a fundamental problem is to recover the conventional notion of measurements
of observables in this general formulation. In what follows, we shall give an answer to this
problem in the light of the notion of quantum perfect correlations.

According to a fundamental postulate of quantum mechanics, if an apparatus A (x)
measures an observable A in a state q, the probability distribution of the output x on input
state q should satisfy the Born statistical formula (BSF)

Prfx 2 Dkqg ¼ Tr½EAðDÞq&; ð42Þ

where D 2 BðRÞ. From the above it is tempting to say that an apparatus A (x) measures ob-
servable A in state q iff it satisfies the BSF Eq. (42). However, to reproduce the probability
distribution of observableA in state q is a necessary but not sufficient condition for the appa-
ratus A (x) to measure A in q. For example, suppose H ¼ K * K, q = r*r, and A = X * I
andB = I * X for someHilbert spaceK, a staterofK, and anobservableXofK. In this case,
we have Tr[EA (D)q] = Tr[EB (D)q] = Tr[EX (D)r], so that every apparatusA (y) measuringB
in state q also satisfies the BSF for A in q. However, we cannot consider that the apparatus
A (y) measuresA in q as well asB in q. SinceA and B are independent observables in the sep-
arated subsystems, so that another apparatusA (x) may simultaneously measureA and may
obtain a different outcome of theAmeasurement. In this case, we can say that the apparatus
A (x) measures A but the apparatus A (y) does not.

To find a satisfactory condition to ensure that a given instrument I measures A in q, let
us consider a measuring process M ¼ ðK; n;U ;MÞ of I . Suppose that we measure A at
time t at which the system S described by Hilbert space H is in state q and that the mea-
suring interaction turns on from time t to t + Dt. In the Heisenberg picture with the ori-
ginal state q * |næÆn|, we write A (t) = A * I, A (t + Dt) = U" (A * I)U, M (t) = I * M, and
M (t + Dt) = U" (I * M)U. Then, to measure A (t), this measurement actually measures
M (t + Dt), so that observables A (t) and M (t + Dt) should be perfectly correlated in the
original state q *|næÆn|.

In the previous example, it is concluded that the meter observable of A (y) after the mea-
suring interaction, M (t + Dt), cannot be perfectly correlated with the observable A before
the interaction, A (t). In fact, M (t + Dt) should be perfectly correlated with the observable
B before the interaction, B (t), while A (t) and B (t) are not perfectly correlated before the
interaction. It follows from the transitivity of perfect correlations that A (t) and M (t + Dt)
cannot be perfectly correlated.

It is also clear that given two ‘‘meter’’ observables M1 and M2 in the external system
described by a Hilbert space K and given the original state q*|næÆn| of H * K at time t,
if both the pair of A (t) and M1 (t + Dt1) and the pair of A (t) and M2 (t + Dt2) are perfectly
correlated in the original state, then we can conclude that both meters give the concordant
outcome from the transitivity of perfect correlations.

According to the above consideration, it is natural to say that a measuring process
M ¼ ðK; n;U ;MÞ precisely measures an observable A on input state q iff the observable
A * I and U" (I * M)U are perfectly correlated in the state q *|næÆn|, and that an instru-
ment I precisely measures an observable A on input state q iff every measuring process
M for I precisely measures A on input state q. In the above, the adverb ‘‘precisely’’ is used
to distinguish this case from any approximate measurements of the same observable.
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The following theorem shows that whether the measuring process M precisely measures
A on q is determined solely by the corresponding POVM.

Theorem 8.1. A measuring process M ¼ ðK; n;U ;MÞ precisely measures an observable A in
a state q if and only if the POVM of M is perfectly correlated with the observable A in the
state q.

Proof. The assertion follows immediately from the relations

Tr½ðEAðDÞ * IÞU yðI * EMðCÞÞUðq * jnihnjÞ& ¼Tr½EAðDÞPMðCÞq&;
Tr½ðEAðDÞ * IÞðq * jnihnjÞ& ¼Tr½EAðDÞq&. !

The following theorem characterizes, up to statistical equivalence, the precise measure-
ments of an observable in a given state.

Theorem 8.2. For any instrument I with POVM PI , any observable A, and any state q, the
following conditions are all equivalent.

(i) I precisely measures A in q.
(ii) PI is perfectly correlated to A in q.
(iii) PI is perfectly correlated to A in any state r 2 SðA; qÞ.
(iv) I satisfies the BSF for A in any state r 2 SðA; qÞ.
(v) PI ðDÞr ¼ EAðDÞr for any r 2 SðA;qÞ and D 2 BðRÞ.
(vi) PI ðDÞPA;q ¼ EAðDÞPA;q for any D 2 BðRÞ.

Proof. The assertion follows easily from Theorems 7.3 and 8.1. h

In the conventional interpretation of instruments proposed by Davies and Lewis [22],
an instrument I is considered to precisely measure A in every state q iff it satisfies the
BSF for A in every state q. Since the BSF for A in a given state q does not ensure that
the instrument I precisely measures A in q, the above hypothesis lacks an immediate jus-
tification in the sense that it is not immediately clear whether this hypothesis excludes the
ambiguity of the simultaneous meter readings of the same observable. However, this
hypothesis has been finally justified by the above theorem, which concludes that I precise-
ly measures A in every state q if and only if I satisfies the BSF for A in every state.

8.3. von Neumann!s model of repeatable measurement

It was shown by von Neumann [2] that a repeatable measurement of an observable

A ¼
X

n

anj/nih/nj ð43Þ

on H with eigenvalues a1, a2, . . . and orthonormal basis of eigenvectors /1, /2, . . . can be
realized by a unitary operator U on the tensor product H * K with another separable Hil-
bert space K with orthonormal basis {nn} such that

Uð/n * nÞ ¼ an/n * nn; ð44Þ

where n is an arbitrary state vector in K, and an is an arbitrary phase factor, i.e., |an| = 1,
for all n. Let
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M ¼
X

n

anjnnihnnj ð45Þ

be an observable on K called the meter. von Neumann!s model defines an apparatus A (x)
with measuring process ðK; n;U ;MÞ.

Let us suppose that the initial state of the system is given by an arbitrary state vector
w ¼

P
n

ffiffiffiffiffipn
p

/n. Then, it follows from the linearity of U we have

Uðw * nÞ ¼
X

n

ffiffiffiffiffi
pn

p
/n * nn. ð46Þ

The conventional explanation as to why this transformation can be regarded as a measure-
ment is as follows; symbols are adapted to the present context in the quote below. ‘‘In the
state (46), obtained by the measurement, there is a statistical correlation between the state
of the object and that of the apparatus: the simultaneous measurement on the system—ob-
ject-plus-apparatus—of the two quantities, one of which is the originally measured quan-
tity of the object and the second the position of the pointer of the apparatus, always leads
to concordant results. As a result, one of these measurements is unnecessary: the state of
the object can be ascertained by an observation on the apparatus. This is a consequence of
the special form of the state vector (46), on not containing any /m * nn term with n „ m
[24].’’ ‘‘The equations of motion permit the description of the process whereby the state
of the object is mirrored by the state of an apparatus. The problem of a measurement
on the object is thereby transformed into the problem of an observation on the apparatus
[24].’’

The above explanation correctly points out the existence of the statistical correlation
between the measured observable A and the meter observable M in the state (46). Howev-
er, this is not the statistical correlation between the measured observable before the inter-
action and the meter observable after the interaction, but that between those observables
after the interaction. Thus, the above statistical correlation does not even ensure that the
probability distribution of the measured observable before the interaction is reproduced
by the observation of the meter observable after the interaction.

The role of the measuring interaction described by U should be to make the follow-
ing two correlations: (i) the correlation between the measured observable A before the
interaction and the meter M after the interaction, and (ii) the correlation between the
meter M after the interaction and the measured observable A after the interaction.
The first correlation is required by the value reproducing requirement that the interaction
transfers the value of the measured observable A before the interaction to the value of
the meter M after the interaction. The second correlation is required by the repeatability
hypothesis that if the meter observable M has the value an after the interaction, then the
observable A also have the same value an after the interaction so that the second mea-
surement of A after the interaction reproduce the same value of the meter of the first
measurement of A.

Now, we shall show that those requirements are actually satisfied. Let g0, g1, . . . be an
orthonormal basis of H such that g0 = n, namely an orthonormal basis extending {n}. Let
Wn,m be a unit vector in H defined by Wn,m = U"(/n * nm) for any n, m. Then, we have
Wn,n = /n * n and the family {Wn,m} is an orthonormal basis of H. By simple calculations,
we have

A * I ¼ A * jnihnj þ
X

m6¼0

A * gmihgm ;jj ð47Þ
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U yðA * IÞU ¼ A * jnihnj þ
X

n6¼m

anjWn;mihWn;mj; ð48Þ

U yðI * MÞU ¼ A * jnihnj þ
X

n6¼m

amjWn;mihWn;mj; ð49Þ

where
P

n6¼m stands for the summation over all n, m with n „ m. By the above relations it is
now obvious that A * I = U" (A * I)U = U" (I * M)U on their common invariant sub-
space H * ½n&, so that those three observables are perfectly correlated in the state w*n
for every state vector w in H. Therefore, von Neumann!s model ðK; n;U ;MÞ satisfies both
the the value reproducing requirement and the repeatability hypothesis.

The following theorem characterizes the unitary operators that fulfil the above two
requirements.

Theorem 8.3. Let {/n} and {nn} be orthonormal bases of H and K, respectively, and the
observables A and B be given by Eq. (43) and Eq. (45), respectively. Then, a unitary operator
U on H * K and a state vector n 2 K satisfy Eq. (44) if and only if (i) A*I and U"(I * B)U
are perfectly correlated in w * n and that (ii) U"(A * I)U and U"(I * B)U are perfectly
correlated in w * n for every state vector w 2 H.

Proof. Suppose that U and n satisfy Eq. (44). Without any loss of generality we assume
U (/n * n) = /n * nn for all n; otherwise, we can replace nn by annn without changing B.
Let w=

P
ncn/n. By linearity of U we have U (w*n)=

P
ncn/n * nn. Thus, it follows from

the argument on the entangled state given Eq. (18), A * I and I * B are perfectly correlat-
ed in U (w * n). By Theorem 2.3, U"(A * I)U and U"(I * B)U are perfectly correlated in
w * n. Thus, condition (ii) holds. Let {gn} be an orthonormal basis of K such that
g1 = n. Then, we have

UðEAðanÞ * IÞðw * nÞ ¼ Uðj/nih/nj * IÞ
X

j

cj/j * n ¼ cnUð/n * nÞ ¼ cn/n * nn;

and

ðI * EBðamÞÞUðw * nÞ ¼ ðI * jnmihnmjÞ
X

j

cj/j * nj ¼ cm/m * nm.

Thus, we have

hðEAðanÞ * IÞðw * nÞ;U yðI * EBðamÞÞUðw * nÞi ¼ c.
ncmdn;m;

and this shows that A * I and U"(I * B)U are perfectly correlated in w * n. Thus, we have
proved the necessity of conditions (i) and (ii). Conversely, suppose that conditions (i) and
(ii) hold. Let w = /n. Since A * I andU"(I * B)U are perfectly correlated in w * n, we have

hðI * EBðanÞÞUð/n * nÞ;Uð/n * nÞi ¼ hðEAðanÞ * IÞð/n * nÞ; ð/n * nÞi ¼ 1.

Thus, U(/n*n) = gn*nn for some state vector gn. Since A * I and I * B are perfectly cor-
related in U(w * n), we have

hEAðanÞgn; gni ¼ hðEAðanÞ * IÞðgn * nnÞ; ðgn * nnÞi
¼ hðI * EBðanÞÞðgn * nnÞ; ðgn * nnÞi ¼ 1.

Thus, jgnæÆgnj = j/næÆ/nj, so that U and n satisfy Eq. (44).
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Now, we return to von Neumann!s measurement model described by Eq. (44). The mea-
surement is said to satisfy the nondemolition condition, iff the measured observable is not
disturbed by the measuring interaction, so that A * I and U"(A * I)U are perfectly corre-
lated in w * n. As we have shown in Theorem 4.2 perfect correlations are transitive. Thus,
the perfect correlation between A * I and U"(I * B)U and that between U"(A * I)U and
U"(I * B)U implies the perfect correlation between A * I and U"(A * I)U. In the same
way, we will be able to explain that two out of three conditions, (i) the valued reproducing
condition, (ii) the repeatability hypothesis, and (iii) the nondemolition condition, imply
the other one, as straightforward consequence of the transitivity of perfect correlations.

9. Concluding remarks

Let X, Y be a pair of (discrete) observables and w a state. Consider the following condi-
tions.

(i) (Equi-valuedness) No joint measurements of X and Y in w, if any, give different val-
ues, i.e.,

hEX ðDÞw;EY ðCÞwi ¼ 0

if D \ C = ;.
(ii) (Reproducibility) Successive projective measurements of X and Y in w always give

the same value irrespective of the order of measurements, i.e.,
X

y2C
kEX ðDÞEY ðfygÞwk2 ¼

X

x2D
kEY ðCÞEX ðfxgÞwk2 ¼ 0

if D \ C = ;.
(iii) (Zero difference) The difference X ' Y has the definite value zero in w. i.e.,

ðX ' Y Þw ¼ 0.

(iv) (Identical distributivity) Independent measurements of X and Y in w have the iden-
tical output probability distribution, i.e.,

kEX ðDÞwk2 ¼ kEY ðDÞwk2

for any D 2 BðRÞ.

In this paper, we have shown the following logical relations among the above conditions.
The following implications holds: (i) () (ii), (i) ) (iii), (i) ) (iv). However, none of the
implications (iii) ) (i), (iii) ) (iv), (iv) ) (i), and (iv) ) (iii) hold. If X and Y commute,
(i) () (iii) and (iii) ) (iv) holds, but (iv) ) (iii) still does not hold. To clarify the mutual
relations, we have considered the notion of the cyclic subspace CðX ;wÞ or CðY ;wÞ and re-
quired conditions (iii) and (iv) to be satisfied by any state / in CðX ;wÞ or CðY ;wÞ, as follows.

(iii) 0 (X ' Y)/ = 0 for any / 2 CðX ;wÞ.
(iv) 0 iEX (D)/i2 = iEY (D)/i2 for any D 2 BðRÞ and any / 2 CðX ;wÞ.
Then, we have shown that all the conditions (i), (ii), (iii) 0, and (iv) 0 are mutually equiv-

alent. According to this, we have proposed and justified to say that X and Y are perfectly
correlated in w iff one of the above equivalent conditions is satisfied.

We have also given an appropriate generalizations of the above considerations to arbi-
trary observables X, Y and arbitrary state q.
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We have shown that so defined relation X ”q Y meaning X and Y are perfectly correlat-
ed in q is an equivalence relation on all the observables. In particular, if X and Y are per-
fectly correlated as well as Y and Z, we can conclude that so are X and Z. This suggests
that perfectly correlated observables can be interpreted to have the same value that can be
realized by joint measurements of them, even though the quantum state determines it only
randomly.

The above interpretation has given a new insight on the state dependent definition of
precise measurements of observables. Even though the outcome of a measurement might
be used to infer what is the state before or after the measurement as in quantum state esti-
mation or quantum state reduction, this inference cannot be done without appealing to the
fact that any measurement measures some observable in the sense of the Born rule; recall
that even a POVMmeasurement corresponds to a measurement of an observable in a larg-
er system and as such a mathematical POVM can be identified with a real experiment.
Thus, the most fundamental question in measurement theory is the one as to what obser-
vable is (precisely) measured by a given apparatus.

Conventionally, this question has been answered only in a state independent manner as
follows: The apparatus measures an observable X if and only if the probability reproduc-
ing condition (PRC) is satisfied for any input state, where the PRC requires that the output
probability distribution reproduces the theoretical probability distribution predicted by
the Born rule. However, the justification of the above definition has not been clear, since
the probability reproducing condition for a given input state does not imply that the mea-
surement is precise in that state. In this respect, our result has successfully justified the con-
ventional definition in that we have given a definition of a precise measurement in a given
state and showed that the conventional definition indeed requires the measurement is pre-
cise in any input state.

The state dependent definition is not a pedantic justification of the conventional ap-
proach. In fact, some measuring apparatus in a laboratory can accept only a small class
of states from the whole Hilbert space of the state vectors. For instance, every microscope
cannot measure the position of a particle outside of the scope. Thus, the experimenter
should have a criterion to judge whether or not the apparatus measures the given obser-
vable depending on the input state. Such a criterion was not even discussed in measure-
ment theory before the present investigation.
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