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Abstract

The problem as to when two noncommuting observables are considered to have the same value arises commonly, but shows
a nontrivial difficulty. Here, an answer is given by establishing the notion of perfect correlations between noncommuting ob-
servables and applied to obtain a criterion for precise measurements of a given observable in a given state.
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1. Introduction

In quantum mechanics, we cannot predict a definite
value of a given observable generally, and it is some-
times stressed that quantum mechanics does not speak
of the value of an observable in a single event, but
only speaks of the average value over a large number
of events. However, the quantum correlation definitely
describes relations of values of observables in a sin-
gle event as typically in the EPR correlation, where we
cannot predict a definite value of the momentum or the
position of each particle from an EPR pair, whereas
we can definitely predict the total momentum and the
distance of the pair, and thereby we have a definite
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one-to-one correspondence between the values of their
momenta to be obtained from their joint measurements
or between the values of their positions.

In this Letter, we shall investigate one of the most
fundamental aspects of quantum correlations; that is,
we shall consider the general problem as to when two
observables X and Y in a quantum system can be con-
sidered to “have the same value”, in a given state, in
the sense suggested above. It should be stressed that
when we use this expression, we do not intend to make
any assumptions as to whether a definite value exists
prior to the measurement; such a question is a mat-
ter of the interpretation of quantum mechanics and we
do not enter into it. Rather, we choose to define what it
means “to have the same value” in terms of perfect cor-
relations as the ones described above, meaning that, if
the two observables are jointly measured, one is guar-
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anteed to obtain the same value for both. As we shall
explain below, the question of when two observables
X and Y “have the same value” arises when one asks if
the time evolution changes the given observable and if
an indirect measurement consisting of the measuring
interaction and the meter measurement is considered
to precisely measure the given observable.

For two classical random variables X and Y, it is
well accepted that X and Y have the same value if and
only if X and Y are perfectly correlated, or equiva-
lently the joint probability of obtaining different val-
ues of X and Y vanishes. Thus, we can immediately
generalize this notion to pairs of commuting observ-
ables based on the well-defined joint probability dis-
tribution of commuting observables, so that two com-
muting observables are considered to have the same
value in the given state if and only if they are perfectly
correlated. However, two operators are not necessar-
ily commuting, and the generalization of the notion
of perfect correlation to noncommuting observables
should be strongly demanded, whereas no serious in-
vestigations have been done. This Letter introduces the
notion of perfect correlations between arbitrary two
observables, and characterizes it by various statistical
notions in quantum mechanics. As a result, the above
problems are shown to be answered by simple and
well-founded conditions in the standard formalism of
quantum mechanics.

2. Difficulties in the notion of perfection
correlation

Let A be an observable of a quantum system in a
state ¢ at the origin of time. Then, it is a fundamental
question to ask whether the observable A is unchanged
or changed between two times #; and t>. Let A(¢) be
the Heisenberg operator at time ¢ corresponding to the
observable A. If the question is asked independent of
the system state 1/, the answer is that A is unchanged
if and only if A(t;) = A(f2). However, the question
depending on the system state shows a nontrivial diffi-
culty.

Let Do = A(t2) — A(t1) be the increment of A from
time #1 to t>. Then, it is natural to expect that the value
of the observable A is unchanged between two times ¢
and 7, in the system state ¥ if and only if the state ¥ is
an eigenstate of D4 with eigenvalue 0, i.e., Dgyy =0,

or equivalently

Alt)Y = A()y. ey

This means that the increment D4 has the definite
value zero in the state ¥. However, the above char-
acterization is unexpectedly not true in general. For
example, let A(f;) and A(f) be two 4 x 4 matrices
such that

A(t) =

A() =

SO == OO ==
S OO = OO ==
—_—_ 0 O = = O O
—_—_ 0 O O~ OO

with time evolution operator U (f2, t1) and the state ¥
such that

0O 0 1 0 1
0 0 0 1 0
U, 1) = 100 ol Y= 0
01 0 0 0

Then, we have A(t1)y = A(t2)vr, and hence the first
and the second moments of A are unchanged, i.c.,
(WIAGD|Y) = (Y|A@) 1Y) =1 and (Y|A(1)*[Y) =
(V| A(12)? ) = 2. However, we have (| A(1))3|y) =
4 but (Y| A(12)3|y) = 3. Thus, the third moment of A
is changed from time #; to 7, so that the observable A
is considered to have been changed in this time inter-
val.

On the other hand, the requirement that A(#;) and
A(t2) should have the same probability distribution in
the state i is a necessary but not sufficient condition,
since there are cases where A(f1) and A(#p) have the
same probability distribution but they are statistically
independent. Specifically, suppose that v is the prod-
uct state of two copies of a state ¢, i.e., ¥ = ¢ @ ¢, and
that there is an observable B such that A(t;)) = B ® I
and A(tp) =1 ® B. In this case, A(¢1) and A(1p) have
the same probability distribution, but they are statisti-
cally independent in the case where ¢ is not an eigen-
state of B. In fact, Doy # 0 if and only if ¢ is not
an eigenstate of B. Thus, in this case, we cannot judge
that the observable A has been unchanged.
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3. Perfect correlation in measurement

The notion of perfect correlation is not restricted
to the problem on the Heisenberg time evolution, but
also has broad applications in foundations on quan-
tum mechanics [1] and quantum information theory
[2]. Among them, another problem concerns the no-
tion of measurement. Any measurement has two not
necessarily commuting observables, one of which is
the observable to be measured and the other is the
meter observable after the measuring interaction [3,4].
A fundamental question as to when the given observ-
able is precisely measured in a given state has re-
mained open. However, this is obviously related to
the perfect correlation between the measured observ-
able and the meter observable. This Letter will solve
this fundamental problem by establishing the general
notion of perfect correlations between noncommuting
observables.

Every measurement can be modeled by a process
of indirect measurement described by the measuring
interaction between the measured object and the mea-
suring apparatus followed by a subsequent observa-
tion of the meter observable in the apparatus [2-8].
Let S be the object and A the apparatus. Then, in or-
der to measure the value of an observable A in S at
time ¢, the time of the measurement, the observer ac-
tually observes the value of the meter observable M
in A at time ¢t + At, where the measuring interaction
is supposed to be turned on from time ¢ to ¢ + At.
Thus, in order to measure the observable A(t), the in-
direct measurement actually observes the observable
M(t + At).

A fundamental problem is to determine what condi-
tion ensures that this measurement successfully mea-
sures the value of the observable A at time 7. If we
have a satisfactory notion of perfect correlation, we
can readily answer this question by stating that the
indirect measurement successfully measures the ob-
servable A at time ¢ if and only if A(¢) and M (r +
At) are perfectly correlated. However, since A(f) and
M (t + At) are not necessarily commuting, the above
question has not been answered generally.

Instead, the conventional approach has questioned
what observable is measured by the above indirect
measurement independent of the input state. Let i be
the state of S at time 7 and & the state of A at time 7.
We assume that the apparatus A is always prepared in

the fixed state & at the time of the measurement, while
the object S is in an arbitrary state v. Then, the indi-
rect measurement measures the observable A at time ¢
if and only if the two observables A(z) and M (¢t 4+ At)
have the same probability distribution for any state
[2—4,6-8].

Since the above definition of measurement of the
observable independent of the input state does not
explicitly require that A(¢) and M (t + At) have the
same value unless the measurement is carried out in
an eigenstate of A(¢), it is not immediately obvious
whether the value randomly obtained by observing
M (t + At) would actually correspond in any way to
the value one would obtain, in the same situation, by
an alternative (indirect or direct) measurement of A (7).
Yet, there is something unsatisfying about the possi-
bility that, for any state not an eigenstate of A(¢), the
two operators A(f) and M (¢t + At) might just repre-
sent independent random variables that just happen to
have the same distribution. One would certainly like to
think that, in a precise measurement, these two oper-
ators should “have the same value” —in the sense de-
fined in the Introduction —even under conditions when
this value may not be a definite quantity prior to the
measurement.

Indeed, the experimenter reads the value of the me-
ter M at time ¢ + At and records that the same value
was taken by A at time ¢; however, there might be a
possibility that another experimenter would obtain a
different value of A at time ¢ from another apparatus.
As above, it has not been ensured that this is not the
case.

In order to solve the above problem, this Letter in-
troduces the notion of perfect correlations between ar-
bitrary two observables in any state, and characterizes
it by various statistical notions in quantum mechan-
ics. As a result, the above problem is affirmatively
answered by simple and well-founded conditions in
the standard formalism of quantum mechanics. In par-
ticular, we shall establish a simple condition for the
measured observable A(¢) and the meter observable
M (t 4 At) to be perfectly correlated in a given state v,
and show that the conventional definition implies that
the measured observable A(¢) and the meter observ-
able M (t + At) are actually perfectly correlated in any
state . Thus, we shall conclude that the measured
value from the meter observable after the measuring
interaction is not produced by the interaction, but ac-
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tually reproduces the value of the measured observable
before the interaction.

4. Definition of perfect correlations

Let X, Y be two observables in a quantum system
S described by a Hilbert space H. For simplicity, in
this Letter we assume that H is finite-dimensional. The
spectral projection EX (x) of X for any x € R is gener-
ally defined to be the projection operator of H onto the
subspace {¢ € H | Xy = x¢}. If X and Y commute,
their joint probability distribution in an arbitrary state
Y is defined by

Pr{X =x,Y = y|[¢} = (VI EX () EY () |¥). 2)

The above probability distribution is operationally in-
terpreted as the joint probability distribution of the
measured values of X and Y in the simultaneous mea-
surement of X and Y. In general, we say that X and Y
are jointly distributed in state yr, if

(WIEX()EY ()]y) >0 3)

for any x, y € R. In this case, we have

(WIEX)EY )IY) = (WIEY O EX (x)|¥). )

Then, for any function F(x, y) = Zj,k fi(x)gr(y) we
have

D F DWIEX)ET (1Y)

X,y
=Wl [iDaMIY)
J.k
= (1Y &) XN, (5)
J.k

We say that X and Y are perfectly correlated in
state i, if

(WIEX()EY (0)]y) =0 ©6)

for any x, y € R with x # y. Itis obvious that perfectly
correlated observables are jointly distributed. Since

(WIEX)1Y) = X (WIEX @) EY (0)I¥), the above

condition is equivalent to the relation

(WIEX ) EY (0IY) = 8x y (WIEX (0)]¥) (7)

for any x,y € R, where §, , stands for Kronecker’s
delta. If X and Y are commuting, the above defini-
tion reduces to the usual one that means that in the
simultaneous measurement of X and Y the joint prob-
ability of the results X = x and Y = y vanishes, if
x # y. We shall show that a pair of observables X, Y
perfectly correlated in a state ¥ are considered to be
simultaneously measurable in the state 1 and that their
outcomes always coincide each other.

We say that two observables X and Y are
identically distributed in state v, if (W|EX(x)|y) =
(W|EY (x)|¥) for all x € R. It follows easily from
Eq. (7) that perfectly correlated observables are iden-
tically distributed. However, it is also obvious that the
converse is not true even for commuting observables.

5. Root mean square of difference

Suppose that X and Y are perfectly correlated in .
Then, intuitively speaking, they have the same value,
even though both of them are random. Thus, it is ex-
pected that the difference X — Y definitely has the
value zero, or equivalently ¥ is an eigenstate of X — Y
with eigenvalue 0, i.e., Xy = Y. In order to prove
this property from our definition, we consider the dis-
tance || Xy — Y/ || between X and Y. Obviously,
| Xy — Y| =0if and only if Xy = Y. We gener-
ally have

IXy — Yy
=| Y xEX@)y =Y yE Oy

= @ =y RWIEX O E ().

X,y

2

Thus, if X and Y are jointly distributed in state v, we
have

IXy = YyI? =) (= 0 WIEX@EY (0IY).
x,y
®)
Suppose that X and Y are perfectly correlated in
state ¥. Then, we have

Y =W WIEXOE 0y
X,y

=) (=) 8y (WIEX @ E" (1)) =0,

X,y
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so that Eq. (8) concludes Xy = Y.

Busch, Heinonen, and Lahti [9] showed that the
condition X = Y does not imply that X and Y
are identically distributed. Moreover, we have shown
in Section 2 that this happens even for unitarily
equivalent observables X and Y. Thus, the condi-
tion X1 = Y does not sufficiently characterize the
perfect correlation, even if X and Y have the same
spectrum. However, for jointly distributed X and Y,
the condition Xy = Y implies their perfect corre-
lation. To show this, suppose that Xy = Yy and X
and Y are jointly distributed in . Then, we have
(WIEX(x)EY (y)|yr) > 0, and from Eq. (8) we have
(x — WAHYIEX(X)EY (y)|¢) = 0 for any x,y € R.
Thus, we have (Y |EX(x)EY (y)|y) =0 if x # y, and
by definition X and Y are perfectly correlated in .

Therefore, we have proven the following theorem.

Theorem 1. Two observables X and Y are perfectly
correlated in state  if and only if X and Y are jointly
distributed and X =Y.

6. Space of perfectly correlating states

Suppose that X and Y are perfectly correlated in .
It is natural to ask what states other than i have this
property. Since X and Y intuitively have the same
value in ¢, if we have obtained the result X = x in
measuring X without disturbing X and Y, we can also
expect to have both X = x and Y = x in the state just
after the above measurement. Thus, it is natural to ex-
pect that X and Y are perfectly correlated also in the
state EX(x)y/||EX(x)y| obtained by the above X
measurement, and by linearity we can also expect that
the state f(X)¥ /|| f(X)y| has this property.

In order to characterize all the states of the form
FX Y/ f(X)¥], we introduce the following termi-
nology. The cyclic subspace spanned by an observable
X and a state i is the subspace C(X, ¥) spanned by
X"y for any n =0,1,2,.... It is easy to see that
C(X,y) is the smallest X invariant subspace of H
including . Denote by C;(X, ) the unit sphere of
C(X,v). Denote by Px y the projection of H onto
C(X,v). Then, we have f(X)Px y = Pxy f(X) =
Px .y f(X) Px,y for any function f. Now, we have the
following theorem.

Theorem 2. For any two observables X and Y and
any state \, the following conditions are equivalent.

(i) Observables X and Y are perfectly correlated in
state .
(ii) Observables X and Y are perfectly correlated in
any state ¢ € C1(X, ¥).
(i) f(X)¥ = f (Y)Y for any function f.
(iv) f(X)Px.y = f(¥)Pxy.
(V) XPxy=YPxy.

Proof. Suppose that condition (i) holds. By the sim-
ilar computations as before, we have || f(X)¢¥ —
F(Y)¥ > =0, and hence, the implication (i) = (iii)
follows. Suppose that condition (iii) holds. Then, we
have f(X)g(X)y¥ = f(¥)g(¥)y = f(¥)g(X)¥ for
any f and g. Since every ¢ € C(X, V) is of the
form ¢ = g(X)y for some g, we have f(X)Px y =
g(Y)Px. y . Thus, the implication (iii) = (iv) follows.
The implication (iv) = (v) is obvious. Suppose that
condition (v) holds. Let P = Py y. Since X leaves
C(X, ¢) invariant, so does Y. Thus, the spectral pro-
jections of YP and XP on C(X,v) are EY(y)P
and EX(y)P, respectively, and hence EY(y)P =
EX(y)P for any y € R, so that EX(x)EY(y)P =
EX(x)EX(y)P. Thus, we have (¢| EX(x)EY (y)|¢) =
0,if x # y, forany ¢ € C{(X, v). It follows that X and
Y are perfectly correlated in any state ¢ € C1(X, ¥).
Thus, the implication (v) = (ii) has been proven.
Since the implication (ii) = (i) is obvious, the proof is
completed. O

By the above theorem, observables X and Y are
represented on the space C(X, 1) by the same operator
XPx,y =Y Px y,and hence X and Y are considered
to be simultaneously measurable in i/ and to have the
identical outcomes. In fact, if one measures X and Y
by consecutive projective measurements of X and Y,
then by Theorem 2(iv) the joint probability distribu-
tion of the two outcomes satisfies

|EYDEX v | = | EXEX )y |

=8¢ y(WIEX () |¥),

and hence the measurement outputs actually show the
perfect correlation predicted by the theoretical joint
probability distribution (7).
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7. Characterization of perfectly correlating states

From the above theorem we have the following im-
portant characterization of perfectly correlating states.

Theorem 3. Two observables X and Y are perfectly
correlated in a state \r if and only if  is a superposi-
tion of common eigenstates of X and Y with common
eigenvalues.

Proof. Suppose that X and Y are perfectly correlated
in a state ¥. Then, C(X, ¥) is generated by eigenstates
of XPx y =Y Pxy. Thus, ¥ is a superposition of
common eigenstates of X and Y with common eigen-
values. Conversely, suppose that i is a superposition
of common eigenstates of X and Y with common
eigenvalues. Then, the subspace S generated by those
eigenstates is invariant under both X and Y and in-
cludes . Thus, C(X, ¥) C S,and X =Y on C(X, ¥),
and hence from Theorem 2(v), we conclude X and Y
are perfectly correlated in . O

8. Identically distributed observables

Theorem 2(ii) suggests that perfectly correlated X
and Y in ¢ are equally distributed in any state in the
cyclic subspace spanned by ¥ and X. The following
theorem shows that the converse is also true.

Theorem 4. Two observables X and Y are perfectly
correlated in state \ if and only if they are identically
distributed in any state ¢ in C{(X, V).

Proof. Suppose that X and Y are perfectly correlated
in state ¥. From Theorem 2(iv), we have f(X)¢ =
f(Y)¢ for any function f and ¢ € C(X, ). Tak-
ing f to be f(y) =8y, we have (p|EX(x)|¢) =
(p|E Y (x)|¢@), so that X and Y are identically distrib-
uted for any ¢ € C;(X, ). Conversely, suppose that
X and Y are identically distributed in any state ¢
in C1(X, ¥). There is an orthonormal basis {|n, v)}
of C(X, ¥) consisting of eigenstates of X such that
X|n,v) = x,|n, v). By the identical distributivity of
X and Y in |n, v), we have Y|n, v) = x,|n, v). Thus,
Y is a superposition of common eigenstates of X and
Y with common eigenvalues. We conclude, therefore,

from Theorem 3 that X and Y are perfectly correlated
instate . O

9. Characterization of precise measurements of
observables

Let A(x) be an apparatus with output variable x
for measuring a system S described by a Hilbert
space H. The measuring process of A(x) is described
by a quadruple (IC, &, U, M) consisting of a Hilbert
space K describing the probe P, a state vector & in IC
describing the state of P just before the measurement,
a unitary operator U on H ® K describing the time
evolution of the composite system S + P during the
measuring interaction, and an observable M on K
describing the meter observable [3,4,6-8,10,11]. We
assume for simplicity that both H and K are finite-
dimensional. If the measuring interaction turns on
from time ¢ to ¢ + At, in the Heisenberg picture with
original state Y ® & at time ¢, we write A(f) = A ® [
and M(t + An)=U"(1 @ M)U.

The probability distribution of the output variable x
on the input state v is given by

Pr{x= x|y} = (¢ @&|UT[I @ EM (0)]U|y @ §).

©)
Let A be an observable on H. Naturally, we should
say that the apparatus A(x) with measuring process
(IC, &, U, M) precisely measures the value of observ-
able A in state v, if the observable A ® I and UT(I ®
M)U are perfectly correlated in the state ¢ ® &£. In
this case, we can say that the measuring interaction re-
produces “the value” taken by A before the measuring
interaction; if the observer were to measure A(z) and
M (t 4+ At) jointly then the observer would obtain the
same value from each measurement, so that the ob-
server can safely report that his value obtained from
observing M (t + At) is the value obtained from the
measurement of A(7). On the other hand, the appara-
tus A(x) is said to satisfy the Born statistical formula
(BSF) for A in state ¢ if

Prix=x |y} = (VIEA(0)|y) (10)

for all x € R. In this case, we can say at least that the
measuring interaction reproduces the probability dis-
tribution of A before the measuring interaction.
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The relation

o) =Tre[UTI@ EMW)JU(I ®@18)E)]  (11)

defines the probability operator valued measure
(POVM) {I1(x) | x € R} of A(x), where Trx stands
for the partial trace over K. Then, the probability dis-
tribution of the output is described by

Prix=x|y} = (Y [IT(xX)|¥). (12)
We say that a POVM {I1(x) | x € R} is perfectly cor-
related to an observable A in a state ¥, if

WIT)E()]Y) =0 (13)

for any x, y € R with x # y. Then, the following the-
orem characterizes precise measurements of the value
of an observable in a given state.

Theorem 5. Let A(X) be an apparatus with measur-
ing process (IC, &, U, M) and POVM {I1(x) | x € R}.
Then, for any observable A and state \r, the following
conditions are all equivalent.

(1) A(x) precisely measures A in .
(i) The POVM {I1(x) | x € R} is perfectly correlated
to Ain .
(i) A(x) satisfies the BSF for A inany ¢ € C1(A, V).
(iv) IT(x)Pa,y = EA(x)PAJp for any x € R.

Proof. The equivalence between conditions (i) and
(i) follows immediately from the relation

WREI[EA ) IUT 1@ EY(0)]UIY ®@¢)
= (YIEA ()T (»)|¥). (14)

We easily obtain the relations

CARL Y ®&E) =C(A, V) ®CE, (15)
Pagryes = Pay @ 8)(&]. (16)

From the above relations, the equivalence of condi-
tions (i) and (iii) follows from Theorem 4. Assume
that condition (i) holds. By Theorem 2, condition (i)
is equivalent to the relation

U'[1® EM(x)|U Pagi,yge
=[E*A(x) ® I]Pasi .yt (17)

for any x € R. Then, UT[I ® EM(x)]U commutes
with Pagr,y s, so that from Eq. (16) we have

U'[1® EM(x)]UPas1yet

=11(x)Pa,y ® [§)(5]. (18)
Thus, Eq. (17) implies the relation
M(x)Pay ®§)(E] = EA(X)Pay ® |§) (£, 19)

so that we have condition (iv). Conversely, it is now
easy to see that condition (iv) implies Eq. (17). Thus,
condition (i) and condition (iv) are equivalent. O

The above theorem shows that whether an appara-
tus precisely measures the value of an observable in a
given state is determined solely by the corresponding
POVM. In the conventional approach, the apparatus
A(x) is said to precisely measure the “observable” A,
if it satisfies the BSF for A in every state ¥ of the
system S [2—4,6-8]. It is well known that A(x) pre-
cisely measures A if and only if IT(x) = E4(x) for
all x € R. By Theorem 5, A(x) satisfies the BSF for A
in every state Y of the measured system if and only if
the meter observable and the measured observable are
perfectly correlated in any input state. Thus, we have
justified the conventional definition by having shown
that every precise measurement of “observable” A re-
produces not only the probability distribution but also
the value taken by A before the measurement.

10. von Neumann’s model of measurement

It was shown by von Neumann [5] that a measure-
ment of an observable

A=Y "anl$n) (] (20)

on H with eigenvalues ag, ap, ... and an orthnormal
basis of eigenvectors ¢o, @1, ... can be realized by a
unitary operator U on the tensor product H & IC with
another separable Hilbert space /C with orthonormal
basis {&,} such that

Udn @) =pn ®&n, 2y

where £ is an arbitrary vector state in /C. Let

M =" aléa) (] (22)
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be an observable on /C called the meter. von Neuman-
n’s model defines an apparatus A(x) with measuring
process (IC, &, U, M).

Let us suppose that the initial state of the system is
given by an arbitrary state vector ¥ = )", ¢, ¢,. Then,
it follows from the linearity of U we have

U ®E) =) cutpn @1 (23)

The conventional explanation as to why this transfor-
mation can be regarded as a measurement is as fol-
lows; symbols are adapted to the present context in the
quote below. “In the state (23), obtained by the mea-
surement, there is a statistical correlation between the
state of the object and that of the apparatus: the si-
multaneous measurement on the system —object-plus-
apparatus—of the two quantities, one of which is the
originally measured quantity of the object and the sec-
ond the position of the pointer of the apparatus, always
leads to concordant results. As a result, one of these
measurements is unnecessary: the state of the object
can be ascertained by an observation on the apparatus.
This is a consequence of the special form of the state
vector (23), on not containing any ¢,, ® &, term with
n # m [12].” “The equations of motion permit the de-
scription of the process whereby the state of the object
is mirrored by the state of an apparatus. The problem
of a measurement on the object is thereby transformed
into the problem of an observation on the apparatus
[12]”

The above explanation correctly points out the ex-
istence of the statistical correlation between the mea-
sured observable A and the meter observable M in
the state (23). However, this is not the statistical cor-
relation between the measured observable before the
interaction and the meter observable after the inter-
action, but that between those observables after the
interaction. Thus, the above statistical correlation does
not even ensure that the probability distribution of the
measured observable before the interaction is repro-
duced by the observation of the meter observable after
the interaction.

The role of the measuring interaction described by
U should be to make the following two correlations:
(i) the correlation between the measured observable A
before the interaction and the meter M after the inter-
action, and (ii) the correlation between the meter M
after the interaction and the measured observable A

after the interaction. The first correlation is required
by the value reproducing requirement that the interac-
tion transfers the value of the measured observable A
before the interaction to the value of the meter M after
the interaction. The second correlation is required by
the repeatability hypothesis that if the meter observ-
able M has the value a,, after the interaction, then the
observable A also have the same value a,, after the in-
teraction so that the second measurement of A after
the interaction reproduce the same value of the meter
of the first measurement of A.

Now, we shall show that those requirements are ac-
tually satisfied. Let 5o, 11, . . . be an orthonormal basis
of H such that no = &, namely an orthonormal basis
extending {£}. Let ¥, ,, be a unit vector in H defined
by ¥ym = UT(¢>n ® &y,) for any n, m. Then, we have
Yy n = ¢p ®E& and the family {¥, ,,} is an orthonormal
basis of H. By simple calculations, we have

AQI=ARIENEI+ ) A® [nm)(nml, (24)
m#0
UNA® DU = AR ENEI+ ) anl W m) (W ml,
n#m (25)
UTI @ M)U = AQ ENEI+ D am|¥m) (P ml,
n#m 26)

where Zn;bm stands for the summation over all n, m
with n # m. By the above relations it is now obvi-
ousthat AQ I =U"(A® U =U"(I ® M)U on
their common invariant subspace H ® [£], so that
those three observables are perfectly correlated in the
state ¥ ® & for every state vector ¥ in H. Therefore,
von Neumann’s model (K, &, U, M) satisfies both the
value reproducing requirement and the repeatability
hypothesis.

11. Concluding remarks

In this Letter, we have introduced the notion of per-
fect correlation between noncommuting observables
and explored its basic properties. This notion is ap-
plied to characterizing the precise measurement of the
value of an observable in a given state and justifies
the conventional definition of precise measurement of
an observable formulated independently of the input
state. Although this Letter has focused on the finite
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level systems, the theory for the general case can be
developed with analogous results under the definition
that observables X and Y are perfectly correlated in
state , if

(WIEX(QEY (DY) =0 (27)

for any mutually disjoint Borel sets A and I", where
EX and EY are the spectral measures of X and Y,
respectively; the detail will be discussed in a forthcom-
ing paper.

The notion of perfect correlation is not restricted to
the problem of measurement, but also has broad ap-
plications in foundations on quantum mechanics [1]
and quantum information theory [2]. Those applica-
tions will be discussed elsewhere.
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