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•The A-B effect

•The adiabatic approximation

•The Berry phase

•Parallel transport

•Generalizations

•Conditional phase gates

•Classical noise in the evolution of spin ½

•Dynamic and geometric decoherence



THE AHARONOV BOHM EFFECT: 
A GEOMETRIC EFFECT

solenoid

In a double slit interference experiment with electrons 
the interference fringes are shifted by the presence of a 
localized magnetic field by an amount proportional to the 
magnetic flux across the solenoid.



•The electron never “touches” the magnetic field

•The fringe shift is gauge invariant

•The shift depends only on the path of the electrons

∆φ =δ0 + ie2π/hc∫1 A.ds - ∫2 A.ds

= δ0 + ie2π/hc∫C12 A.ds

= δ0 + ie2π/hc∫∫S B.dS

= δ0 + iΦe2π/hc

Phase shift

Magnetic flux



THE ADIABATIC APPROXIMATION

H(R(t)) |Ψ> = E(R(t)) |Ψ>

•The hamiltonian H depends on 
a set of control parameters R

•The control parameters are 
changed adiabatically  

If the system is initially in a non degenerate energy 
eigenstate it will remain in the corresponding 
eigenstate during the whole adiabatic evolution



THE BERRY PHASE

Assume that the change in the control parameters R is cyclic

E(T) = E(0) 
H(T) = H(0)

R(T) = R(0)

The final state differs from the initial one by a phase factor

|Ψ (T) > = exp iγ exp iδ |Ψ (0) >

•Dinamical phase δ = ∫0T E(t)dt 

•Geometric (Berry) phase γ



γ = ∫C A.dR A(R)n ≡ i <n(R(t))|∇ R | n(R(t))>

BERRY CONNECTION

BERRY PHASE

•The Berry connection is the analogue of the vector 
potential in the A-B effect

•It depends on the geometry of the trajectory in 
parameter space, e.g it is zero for a closed loop 
enclosing zero area



The Berry phase is invariant under gauge 
transformation and under path parameterization

| n(R(t))>                | n’(R(t))> = exp iα(R) | n(R(t))>

A(R)                A’(R) =  A(R) - ∇ R α(R) 

γ’ = ∫C A’.dR = ∫C A.dR + ∫C ∇ R α(R).dR = γ

Gauge invariance is guaranted by cyclic evolution.

The Berry phase as a flux

γ = ∫C A.dR = ∫∫S ∇ ×A.dS= ∫∫S F.dS



•The Berry connection is a function  only of 
the eigenstates dependence on the control 
parameters but it is independent  from  the 
energy spectrum.

•The Berry phase keeps a memory of the 
path followed in parameter space

•The dynamic phase keeps a memory on 
how fast the path is followed 



AN EXAMPLE: A SPIN ½ IN A MAGNETIC FIELD

H = − ½ B.σ

| ↑ >B = eiφ/2 cosθ/2 |↑ >z + eiφ/2 sinθ/2 | ↓>z

| ↓ >B = eiφ/2 sinθ/2 | ↑ >z − eiφ/2 cosθ/2 | ↓ >z

Eigenstates

Aθ ↑ = Aθ ↓ = i < ↑B|∂ /∂θ | ↑B >= 0

Aφ ↑ = − Aφ ↓ = i < ↑B|∂ /∂φ | ↑B >= ½ cosθ

Fφθ↓ = − Fφθ ↑ = ∂φ Aθ - ∂θ Aφ = ½ sinθ

Independent
from |B|



AN EXAMPLE: PRECESSION 
AROUND A PARALLEL

B

x

y

z B precesses at an angle θ
around the z axis with angular 
velocity Ω

The Berry phase is
independent from Ω

γ↑ = −γ↓ = -∫02π∫ 0
θ ½ sinθ dφdθ = −π (1 − cosθ)



x

y

z

The Berry phase is equal to the solid angle 
subtended by B at the degeneracy

Path followed 
by B

Solid angle

Unit
sphere



THE BERRY CONNECTION 
GIVES A RULE FOR THE 
PARALLEL TRANSPORT OF THE 
PHASE OF A QUANTUM STATE

Parallel transport on a curved surface



CONDITIONAL PHASE SHIFT

x

y

z

H = + ½ B1
.σ1 + ½ B2σ2 ++ ∆ Bσ1σ2

Spin 2 
(target)

Conditional
solid angle

Spin 2 
(control)

B1Eff = ½ B1+ ∆ Bσ2

J. Jones, V. Vedral,  A.K. Ekert, 
C.Castagnoli, NATURE, 403, 869 (2000).

G. Falci, R. Fazio, G.M. Palma, J. Siewert, 
V.Vedral, NATURE,407, 355, (2000).



GEOMETRIC QUANTUM PHASE GATE

The phase shift on the “target” spin (qubit) depends 
on the value of the “control” spin (qubit).

Can be used to implement a quantum  conditional 
phase gate (a universal two-qubit gate)

eiγ↑/2 0 0 0

0 e-iγ↑/2 0 0

0 0 eiγ↓/2 0

0 0 0 e-iγ↓/2
φ

C

T

With a suitable choice of path in parameter
space it is possible to fix γ↑



HOW TO MEASURE THE BERRY PHASE

Mach – Zhender interferometer

γ↓

γ↑

P(↑ ) α cos2(γ↑ −γ↓ )

| ↑ >

1/√2 (|↑ >+| ↓>)
1/√2(eiγ↑/2|↑ >+ eiγ↓/2| ↓>)



•Superposition of energy eigenstates

•Cyclic adiabatic change of the Hamiltonian

•Mixing of the energy eigenstates

•Detection

<Ο>= Σ <i|O|j> cos (γi – γj)

The last two steps amount to measuring 
an observable O which does not commute 
with the Hamiltonian



SPIN ECHO

It is possible to eliminate the dynamical  contribution 
to the overall phase with a spin echo technique

|Ψ > = a|↑ >  + b|↓>

Cyclic evolution |Ψ > = ei(δ+γ) a|↑ >  + e-i(δ+γ)b|↓>

Spin flip |Ψ >T = ei(δ+γ) a| ↓ >  + e-i(δ+γ)b| ↑ >

Cyclic evolution in the 
opposite verse |Ψ >T = ei2γ a|↑ >  + e-i2γ b|↓>

The dynamic phases cancel while the 
geometric one add



GENERALIZATION : THE 
AHARONOV ANANDAN PHASE

It is possible to relax the condition of adiabaticity. 
A geometric phase can be defined for cyclic 
evolution of a state in the projective Hilbert space

Such phase depends 
only on the closed 
trajectory in the 
projective Hilbert space



GENERALIZATION: NON CYCLIC EVOLUTION

If the evolution is not 
cyclic it is still possible to 
define a geometric phase 
by closing the trajectory 
along a “geodetic” in 
parameter space



GENERALIZATION : NON ABELIAN PHASE

•If the energy eigenspaces are non 
degenerate the effect of a cyclic adiabatic 
evolution is to unitarily mix them 

•Such scheme is useful to implement all 
geometric quantum computation



FAULT TOLERANT QUANTUM COMPUTATION

Geometric quantum computation is believed to be 
intrinsically more robust against random errors

x

y

z
As the geometric phase is 
proportional to the overall 
area traced on the unit 
sphere i.e. to a global 
property of the path in 
parameter space, errors 
with zero time average 
should not introduce errors



OBJECTION

•Dynamic phase δ = ∫0T E(t)dt 

E

t

•The dynamical phase is 
proportional to the area 
of E(t) vs. t

•Dynamic  phase 
fluctuations are known to 
introduce decoherence

Do fluctuations play a different role in 
geometric and in dynamic phases?



THE NOISE MODEL
G.DeChiara G.M.Palma, Phys.Rev.Lett, in press

quan-ph/0303155

H = − ½ BT
.σ

BT = B + K

Control 
field

Fluctuating
field

A spin ½ interacting with a classical magnetic field 
with a small fluctuating component to model 
fluctuations in the control parameters



NOISE PROPERTIES

•K << B

•K is assumed to be a Ornstein –Uhlenbeck
process with zero average and variance σ2. It is 
therefore:

•Gaussian

•Markovian

•Stationary

•The noise is “adiabatic”, i.e. the bandwidth of its 
Lorentian spectrum is smaller than B. 



FIRST ORDER CORRECTIONS

First order correction the connection

Aφ(θ) ≅ Aφ(θ0) + ∂ /∂θ Aφ(θ) δθ
= ½ (1 – cosθ0 +δθ sinθ0)

For a 
precession 
around the z
axis φ’0 = 2π/Τ

First order correction the line element

δφ= φ’ dt ≅ (φ’0 +δφ’) dt

First order correction to the Berry phase

γ =  ∫0Τ (Aφ(θ0) + δAφ)(φ’0 +δφ’) dt

≅ γ 0   + 2π/Τ ∫0Τ δAφ dt + Aφ(θ0 ) ∫0Τ δφ‘dt

≅ γ 0   + 2π/Τ ∫0Τ sinθ0δφ’ dt + Aφ(θ0 ) δφ(T)

The connection 
fluctuates

The path does 
not close



APPROXIMATE EXPRESSIONS

cos(θ0 +δθ) ≅ cosθ0 − δθ sinθ0
= B3/B + K3/B − B.K B3 /B3

γ =  γ0   + 2π/Τ ∫0Τ (K3/B − B.K B3 /B3)dt

The Berry phase can be evaluated in 
terms of the cartesian component of 
K, each of which is a gaussian
random process with (generally 
different) variance.

It can be shown that the non cyclic corrections do 
not contribute.



ENERGY FLUCTUATIONS

The fluctuating field K introduces also fluctuations 
in the energy eigenvalues

H = − ½ (B + K).σ

To first order E = ± 1/2 (B + B.K / B)

δ= δ0   + ∫0Τ B.K / B dt
= δ0   + ∫0Τ δE(t)dt



DECOHERENCE

|Ψ >0 = a|↑ >  + b |↓> φ has a probability distribution P(φ)

|Ψ >T = eiφ a|↑ >  + e-iφ b|↓>

In our case the joint probability distribution for the 
dynamic + geometric phase is gaussian

ρ = ∫ |Ψ (φ) >< Ψ(φ)|dφ =   |a|2 ab*ei2α exp{−2σ2}

a*b ei2α↑ exp{−2σ2} |b|2

Phase fluctuations generate decoherence



RESULTS

The variance grows linearly with time 

In the adiabatic limit the variance is due to the 
dynamic contribution 

The effect of noise is different in the geometric and 
in dynamic phases

γ≅ γ 0  + 2π/Τ ∫0Τ δAφ dt

δ ≅ δ0   + ∫0Τ δE(t)dt
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CONCLUSIONS

•geometric phases are a general properties of 
quantum evolution

•can be used to implement quantum gates

•can generate entanglement 

•geometric effects by themselves are more 
robust against noise

•the major source of decoherence are energy 
fluctuations.


