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Abstract. We study the structure of a quantum Markov semi-
group (Tt)t≥0 on a von Neumann algebra A starting from its de-
composition by means of the transient and recurrent projections.
The existence of invariant states and convergence to invariant state
is also discussed. Applications to quantum Markov semigroups
with Lindblad type infinitesimal generator are analysed.

1. Introduction

Quantum Markov Semigroups (QMS) form a distinguished class of
semigroups of operators acting on an operator algebra with a special
positivity property. They arose in the theory of open quantum systems
as a model for irreversible evolutions in quantum mechanics. In the
extensive physical literature on the subject (see [3], [4], [5], [6], [11], [22],
[23], [27] and the references therein) they are usually called quantum
dynamical semigroups.

From a mathematical point of view, QMS are a natural generalisation
of classical Markov semigroups on a function space, which is replaced,
in quantum theory, by a (non-commutative) operator algebra. This
generalisation gives a rigorous basis to the study of the qualitative
behaviour of evolution equations (master equations) on an operator
algebra that presently, in the physical literature, are either computed
explicitly, whenever this is possible, or simulated numerically (see [26]
and the references therein).

In this paper we shall illustrate some recent results on QMS.
We start giving the definition of a QMS on an arbitrary von Neu-

mann A algebra, a strongly closed subalgebra of the algebra B(h) of
all bounded operators on a separable Hilbert space h. The identity
operator on A will be denoted by 1l. Recall that any von Neumann
algebra A is the dual of a Banach space usually denoted A∗ (called the
predual space) and the weak∗ topology on A is obviously defined.

1
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Definition 1.1. A quantum dynamical semigroup (QDS) on a von
Neumann algebra A is a family T = (Tt)t≥0 of bounded operators on A
with the following properties:

(1) T0(a) = a, for all a ∈ A,
(2) Tt+s(a) = Tt (Ts(a)), for all s, t ≥ 0 and all a ∈ A,
(3) Tt is completely positive for all t ≥ 0,
(4) Tt is a normal operator on A for all t ≥ 0, i.e. for every

increasing net (aα)α in A with l.u.b.aα = a ∈ A we have
l.u.b.αTt(aα) = Tt(a),

(5) for each a ∈ A, the map t → Tt(a) is continuous with respect
to the weak∗ topology on A.

A quantum dynamical semigroup is Markov if it is identity-preserving.

A map Φ : A → A is called completely positive if, for every n ≥ 1,
the map on the algebra A⊗Mn of A-valued n× n matrices




a11 . . . a1n

. . . . . . . . .
an1 . . . ann


 −→




Φ(a11) . . . Φ(a1n)
. . . . . . . . .

Φ(an1) . . . Φ(ann)




is positive, i.e. maps positive operators to positive operators. It is
known that a positive map on a commutative von Neumann algebra is
completely positive ([28]).

Note that, for a QMS T , the operators Tt turn out to be contractions
for the norm of A as in the classical commutative case.

When A = B(h), then A is the dual space of the Banach space A∗ of
trace class operators on h. In this case the simplest example of a QMS
is given by

Tt(a) = eitHae−itH

where H is a self-adjoint operator on h. It is easy to see that the above
semigroup is weakly∗ continuous and, if the Hilbert space h is infinite
dimensional, then it is strongly continuous if and only if H is bounded
(in this case the above QMS is also uniformly (or norm) continuous).
This is the main reason for assuming weak∗ continuity in (5).

It is worth noticing here that, due to the property (4), the QMS T is
the dual semigroup of a strongly continuous semigroup on A∗, denoted
T∗, therefore one could study the properties of the latter semigroup
and state them for T by duality. However, we shall study T directly
in order to stress the role of complete positivity.

By the duality (A∗,A), we can easily find an operator L∗ on A∗
with adjoint equal to L. This is clearly the generator of the preadjoint
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semigroup T∗. The equation

d

dt
T∗t(ρ) = T∗t(L∗(ρ))

is called in the physical literature Markovian Master Equation.
A state is a positive linear functional ω on A normalized by ω(1l) = 1.

It is called normal if it is weak∗-continuous. It is faithful if ω(a) = 0
for a positive a ∈ A implies a = 0. A normal state ω admits a density,
a positive operator Dω on h such that ω(a) = tr (Dωa) for all a ∈ A.

Definition 1.2. A normal state ρ is invariant or stationary for a QMS
T if tr (ρTt(a)) = tr (ρa) for all a ∈ A and t ≥ 0 (i.e. T∗t(ρ) = ρ for
all t ≥ 0).

The following fundamental result due to G. Lindblad [25] charac-
terises the generator of a uniformly continuous QMS on the von Neu-
mann algebra B(h).

Theorem 1.1. Let T be a uniformly continuous semigroup of normal
operators on B(h). The following are equivalent:

(1) T is a QMS, i.e. the maps Tt ( t ≥ 0 ) are completely positive,
(2) the infinitesimal generator L can be represented in the form

L(x) = G∗x +
∑

`≥1

L∗`xL` + xG (1)

with L`, G ∈ B(h), the series
∑

` L∗`L` strongly convergent (i.e.∑
`≥1 ‖L`v‖2 < ∞ for all v ∈ h) and G + G∗ +

∑
` L∗`L` = 0.

A generalisation of Lindblad’s theorem (1.1) to weak∗ continuous
semigroups is not known but uniform continuity is too restrictive in
several physical applications. There are, however, constructions of a
QMS with an unbounded generator L associated with unbounded op-
erators G,L` on h (see Section 6). A special attention will be given to
QMS on B(h) whose generators can be written in a generalised Lind-
blad form (1). This class is sufficiently wide to cover the applications
([1], [3], [5], [4], [6], [11], [22], [23], [27]) to Quantum Optics.

The aim of this paper is to present several recent results describing
the structure of a QMS and the qualitative behaviour of the associated
dynamics (existence of invariant states, convergence to invariant state,
escape to infinity, . . . ).

The paper is organised as follows. In Section 2 we introduce the posi-
tive recurrent projection determined by the supports of normal invariant
states and in Section 3 we define the transient projection determined,
on the contrary, by states with finite life time. These projections are
orthogonal and determine in a natural way two reduced sub-semigroups
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of the given QMS with quite different behaviours leading us to a notion
of irreducibility.

In Section 4 we discuss some tools for proving the existence of normal
invariant states and the ergodicity of the QMS (Section 5).

In Section 6 we describe the generalised Lindblad type generators
associated with unbounded G and L`’s. Then we give in Section 7
sufficient conditions for the existence of normal invariant states and
the ergodicity of the QMS depending only on the operators G and L`

which are usually given in the applications instead of the QMS.
A lot of information on the QMS T can be obtained by a simple

analysis especially when the generator is associated with operators G,
L` (see e.g. Theorem 6.1, Theorem 7.1, Theorem 7.2). Deeper spectral
properties have been investigated in [7] and [9].

Some applications, drawn from the bewildering variety of Markovian
Master Equations in the physical literature, have been studied in detail
but will not be discussed here for lack of space. We refer the interested
reader to [15], [16], [17], [19] .

2. The recurrent projection

Let ω be a normal state on A. Its support projection s(ω) is defined
as the smallest projection p in A such that ω(p) = 1 (see [13]).

Proposition 2.1. Let ρ be a normal invariant state for a QMS T .
The support projection s(ρ) satisfies Tt(s(ρ)) ≥ s(ρ) for all t ≥ 0.

Proof. Denote p = s(ρ). We have then

tr (ρpTt(p
⊥)p) = tr (ρTt(p

⊥)) = tr (ρp⊥) = 0.

It follows then that pTt(p
⊥)p = 0 because ρ is faithful on the algebra

pAp. The conclusion follows then from the simple Lemma 2.1. ¤
Lemma 2.1. Let a be a positive element of A and let p be a projection
in A. If pap = 0 then a = p⊥ap⊥.

Proof. Indeed, for all v, u ∈ h with pu = u and p⊥v = v, and all z ∈ C
we have

0 ≤ 〈(v + zu), a(v + zu)〉 = 2<ez〈v, au〉+ 〈v, av〉.
This implies 〈v, au〉 = 0. ¤

Following the terminologies of potential theory and Markov processes
we define

Definition 2.1. A self-adjoint element a of A is called subharmonic
(resp. superharmonic, harmonic) for a QMS T if Tt(a) ≥ a (resp.
Tt(a) ≤ a, Tt(a) = a) for all t ≥ 0.
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The support projection of an invariant state is subharmonic (Propo-
sition 2.1).

Definition 2.2. Let (pi)i∈I be a family of projections in a Hilbert space
h. We denote by ∨i∈Ipi the projection onto the closure of the linear
subspace of h generated by the ranges of the pi’s.

Proposition 2.2. Let (pi)i∈I be a family of subharmonic projections
for a QMS T . The projection p = ∨i∈Ipi is also subharmonic for T .

Proof. It suffices to check that Tt(p
⊥) ≤ p⊥. For all u ∈ h with

piui = ui, we have
〈
ui, Tt(p

⊥)ui

〉
≤

〈
ui, Tt(p

⊥
i )ui

〉
≤

〈
ui, p

⊥
i ui

〉
= 0.

Therefore, for all v ∈ h and all ui ∈ h such that piui = ui, we have
∣∣∣
〈
v, Tt(p

⊥)ui

〉∣∣∣
2 ≤ ‖(Tt(p

⊥))1/2v‖2 · ‖(Tt(p
⊥))1/2ui‖2 = 0.

It follows that Tt(p
⊥)p = 0 and adjoint pTt(p

⊥)p = 0. The conclusion
follows from Lemma 2.1. ¤
Definition 2.3. We call positive recurrent projection associated with
a QMS T the projection pR = ∨i∈Ipi where the pi’s are the support
projections of all the invariant states of T .

If p is a T -subharmonic projection and ω is a normal state with
s(ω) ≤ p. Then s(T∗t(ω)) ≤ p for all t ≥ 0. Indeed

T∗t(ω)(p⊥) = ω(Tt(p
⊥)) ≤ ω(p⊥) = 0.

It follows that the restriction of the operators T∗t to pA∗p yields a trace
preserving semigroup on pA∗p. The dual semigroup T p is a QMS on
pAp characterized by T p

t (a) = pTt(a)p for all t ≥ 0. This will be called
the reduced semigroup associated with the subharmonic projection p.

The reduced semigroup T pR associated with the positive recurrent
projection pR has a faithful set of normal invariant states. Moreover it
is a Markov semigroup. Indeed

pR = pRTt(1l)pR ≥ pRTt(pR)pR ≥ pR

Denote F(T ) the linear space of fixed points of the QMS T )

F(T ) = {a ∈ A | Tt(a) = a, ∀t ≥ 0 } .

It is not hard to see that, if the QMS T ) has a faithful set of normal
invariant states , then F(T ) is an algebra. Indeed, if a belongs to F(T ),
then a∗a = Tt(a

∗)T (a) ≤ Tt(a
∗a), because T is completely positive.

Moreover
0 ≤ tr (Tt(a

∗a)− a∗a) = 0
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for all normal invariant state ρ. Therefore, since the set of invariant
states is also faithful, it follows that Tt(a

∗a) = a∗a.
The reduced semigroup T pR has good asymptotic properties

Theorem 2.1. The limit

E(a) = w∗ − lim
t→∞

1

t

∫ t

0
T pR

s (a)ds

exists for all a ∈ A and defines a normal T -invariant norm-one pro-
jection onto the von Neumann subalgebra F(T pR) of pRApR. A normal
state ω is T -invariant if and only if ω ◦ E = ω.

We refer to Frigerio and Verri [21] for the proof of this and the
following theorem.

Theorem 2.2. For a QMS T on a von Neumann algebra A the fol-
lowing conditions are equivalent:

(1) there exists a normal T -invariant norm-one projection P of A
onto F(T ),

(2) w − limt→∞ t−1
∫ t
0 T∗s(ϕ)ds exists for all ϕ ∈ A∗,

(3) w∗ − limt→∞ t−1
∫ t
0 Ts(pR)ds = 1l.

If the above conditions are satisfied, then, for all a ∈ A

P(a) = w∗ − lim
t→∞

1

t

∫ t

0
Ts(a)ds.

The above results are not easily applicable to concrete QMS arising
in physical applications. We shall introduce simpler tools further.

3. The transient projection and irreducible QMS

In this section we introduce a projection in A determined by states
with finite sojourn time and call it transient projection.

We shall use quadratic forms language and results following the book
of Kato [24].

Definition 3.1. Let x be a positive operator A. The form-potential of
x is the quadratic form U(x) on the domain

D(U(x)) =

{
u ∈ h | sup

t≥0

∫ t

0
〈u, Ts(x)u〉ds < ∞

}
,

defined, for all u ∈ D(U(x)), by

U(x)[u] =
∫ ∞

0
〈u, Ts(x)u〉ds.
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Note that U(x)[u] can be interpreted as the time spent in x by the
state u.

The quadratic form U(x) is clearly a symmetric and positive form
and by Thm. 3.13a and Lemma 3.14a of [24] it is also closed. Therefore,
when it is densely defined, it is represented by a self-adjoint operator
(see Th.2.1, p.322, Th. 2.6, p.323 and Th. 2.23 p.331 of [24]). This
motivates the following definition.

Definition 3.2. Let x be a positive operator in A such that D(U(x))
is dense. The potential of x is the self-adjoint operator U(x) which
represents the quadratic form U(x).

Form-potentials provide in a natural way subharmonic projections.

Theorem 3.1. Let x be a positive operator in A. The orthogonal
projections onto

i) the closure of D(U(x)),
ii) the closed subspace {u ∈ h | U(x)[u] = 0},

are subharmonic.

We refer to Fagnola and Rebolledo [18] Prop. 3 p. 292, Prop. 4 p.
294 for the proof.

We denote by Aint the cone of positive operators x ∈ A with U(x)
well defined and bounded on h. For each positive operator x on h we
call support of x and denote it by s(x) the projection onto ker(x)⊥. Let

S := { p ∈ A | p2 = p, p = p∗, ∃x ∈ Aint s.t. p = s(U(x)) }
and define the projection pT in A

pT := ∨p∈S p.

Definition 3.3. We call pT the transient projection associated with
the QMS T .

The transient projection is orthogonal to the support of invariant
states. Indeed

Proposition 3.1. We have pT ≤ p⊥R.

Proof. If p = s(U(x)) with x ∈ Aint, and ω is a T -invariant state, we
have

‖ω‖ · ‖U(x)‖ ≥ ω(U(x)) =
∫ ∞

0
ω(Ts(x))ds =

∫ ∞

0
ω(x)ds,

which implies ω(U(x)) = 0. Since ω is faithful on the subalgebra
s(ω)As(ω), this implies that s(ω)U(x) = 0, i.e. U(x)(h) ⊆ ker s(ω). It
follows that the support s(U(x)) of U(x) is contained in ker pR, i.e. we
obtain p ≤ p⊥R for all p ∈ S, which implies pT ≤ p⊥R. ¤
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We define also

Definition 3.4. The projection pR0 = p⊥R − pT is called null recurrent
projection.

By Theorem 3.1 ii) each projection p in S is superharmonic. It is not
clear whether the supremum of a family of superharmonic projection
is still superharmonic. However we can prove the following

Theorem 3.2. Suppose that the Hilbert space h is separable. Then the
projection pT is superharmonic. Moreover there exists an increasing
sequence (pn)n≥1 of projections in h with U(pn) bounded for each n ≥ 1
and pT = supn pn.

We refer to [29] for the proof. As a consequence we have the following

Proposition 3.2. Suppose that the Hilbert space h is separable. The
subalgebra pTApT is Tt invariant for all t ≥ 0.

Proof. Indeed, for all positive x ∈ A with x = pT xpT , we have
x ≤ ‖x‖pT and

0 ≤ p⊥T Tt(x)p⊥T ≤ ‖x‖p⊥T Tt(pT )p⊥T = 0,

since Tt(pT ) ≤ pT . It follows then from Lemma 2.1 that pTTt(x)pT =
Tt(x). ¤

The asymptotic behaviour of T on the algebra pTApT can be de-
scribed easily. Indeed, let (pn)n≥1 be the sequence of projections in
h as in Theorem 3.2. For all n ≥ 1 and all u ∈ h the function
t → 〈u, Tt(pn)u〉 is uniformly continuous and integrable on [0, +∞[.
Therefore it vanishes for t → ∞. It follows that Tt(pn) converges
strongly to 0 as t tends to infinity.

As a consequence we have the following

Corollary 3.1. Suppose that the Hilbert space h is separable. Then the
restriction of T to pTApT has no normal invariant state.

Proof. Indeed, if ω is a normal state on pTApT , then limn→∞ ω(pn) =
ω(pT ) = 1. If ω is also T -invariant,then there exists a m > 1 such that

1/2 < ω(pm) = ω(Tt(pm))

for all t ≥ 0. Since Tt(pm) converges strongly to 0 as t tends to infinity,
letting t tend to infinity, we find the contradiction 1/2 < 0. ¤

The asymptotic behaviour of reduced QMS’s through pR or pT is
completely different. Moreover it can be shown as in Proposition 3.2
that each superharmonic projection p determines a Tt-invariant algebra
pAp and a reduced semigroup (irrespectively of the separability of h).
This motivates the following
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Definition 3.5. A QMS is called

(1) irreducible if it has no non-trivial (i.e. not 0 or 1l) superhar-
monic projection,

(2) transient if pT = 1l,
(3) recurrent if pT = 0,
(4) positive recurrent or fast recurrent if pR = 1l,
(5) null recurrent or slow recurrent if pR0 = 1l.

The above terminology is borrowed from classical (with A commu-
tative) theory of Markov semigroups. It is worth noticing here that an
irreducible QMS, on a von Neumann algebra A ⊆ B(h) with h separa-
ble, is either recurrent or transient.

4. Existence of normal invariant states

The existence normal invariant states is a crucial issue in several
models. In this section we show how to prove it by a simple compact-
ness argument. We restrict ourselves to the case A = B(h).

In order to find an invariant state a quite natural starting point are
again the points of the Cesàro means

1

t

∫ t

0
T∗s(ϕ)ds, t > 0 (2)

where ϕ is a positive trace-one operator.
Since the maps T∗s are positive and trace preserving, the positive

operators (2) have trace 1. Therefore, by weak compactness, one can
find several limit points ρ which are invariant under the action of the
maps T∗t. However, there is no reason for tr (ρ) to be equal to 1.

We introduce then the following

Definition 4.1. A sequence (ωn)n≥1 in the Banach space of trace-class
operators on h is tight if, for every ε > 0, there exists a finite rank
projection p and an n0 > 0 such that tr (ωnp) > 1−ε for every n ≥ n0.

Tightness allows to prove easily the following

Theorem 4.1. A tight sequence of normal states admits a subsequence
converging weakly to a normal state.

We now give a sufficient tightness condition.
For each self-adjoint operator Y , bounded from below, with spectral

resolution (Er)r∈R, let Y ∧r be the truncated bounded operator Y ∧r =
Y Er + rE⊥

r .

Theorem 4.2. Let T be a QMS on B(h). Suppose that there exist two
self-adjoint operators X and Y with X positive and Y bounded from
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below and with finite dimensional spectral projections associated with
bounded intervals such that

∫ t

0
〈u, Ts(Y ∧ r)u〉ds ≤ 〈u,Xu〉 (3)

for all t, r ≥ 0 and all u ∈ Dom(X). Then the QMS T has a normal
invariant state.

Proof. We follow the proof given in [16].
Let −b (b > 0) be a lower bound for Y . Clearly, for each r ≥ 0 we

have Y ∧ r ≥ −bEr + rE⊥
r = −(b+ r)Er + r1l. The inequality (3) yields

−(b + r)
∫ t

0
〈u, Ts(Er)u〉ds + rt‖u‖2 ≤ 〈u,Xu〉

for all u ∈ dom(X). We normalize u and denote by |u〉〈u| the pure
state associated with the unit vector u i.e. the rank-one projection
|u〉〈u|v = 〈u, v〉u. Dividing by t(b + r), for all t, r > 0 we have then

1

t

∫ t

0
tr (T∗s(|u〉〈u|)Er) ds ≥ r

b + r
− 〈u,Xu〉

t(b + r)
.

Therefore, for all ε > 0, there exists t(ε) > 0, r(ε) > 0 such that

1

t

∫ t

0
tr

(
T∗s(|u〉〈u|)Er(ε)

)
ds ≥ 1− ε.

The conclusion follows then from Theorem 4.1 and the T∗t-invariance
of limit points of (2). ¤

Remark. Once the existence of an invariant state ω is established, if
the QMS T is irreducible, ω is faithful by Proposition 2.1.

5. Convergence to a faithful invariant state

Suppose that a QMS T admits a faithful normal invariant state ρ
and let P : A → F(T ) be the projection as in Theorem 2.1.

Following the physical terminology, we say that T approaches the
invariant state if it satisfies

w∗ − lim
t→∞ Tt(a) = P(a), (4)

for each a ∈ A. This property can be established if we are able to
characterise the peripheral spectrum of Tt (see [2] and the references
therein). Clearly, it might not hold even when h is finite dimensional
and Tt(x) = eitHxe−itH with H self-adjoint. On the other hand it is
often difficult to characterise the peripheral spectrum of Tt.
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Frigerio and Verri [21] developed the following method which has the
advantage of leading to simple conditions on the generator of the QMS.
Let us define

N (T ) = { a ∈ A | Tt(a
∗a) = Tt(a

∗)Tt(a), Tt(aa∗) = Tt(a)Tt(a
∗) } .

It is not hard to prove that the following

Proposition 5.1. F(T ) is a subset of N (T ).

Proof. Indeed, if a belongs to N (T ), since the maps Tt are completely
positive and identity preserving we have

a∗a = Tt(a
∗)Tt(a) ≤ Tt(a

∗a), aa∗ = Tt(a)Tt(a
∗) ≤ Tt(aa∗).

Moreover, ρ is an invariant state and we have

0 ≤ tr (ρ (Tt(a
∗a)− a∗a)) = tr (ρ (Tt(a

∗a)− a∗a)) = 0.

Since ρ is faithful it follows that Tt(a
∗a) = Tt(a

∗)Tt(a). In a similar way
we check the identity Tt(aa∗) = Tt(a)Tt(a

∗) It follows that a belongs to
N (T ). ¤

The following is the sufficient condition (which is also necessary un-
der some additional assumption, see e.g. [15]) due to Frigerio and
Verri.

Theorem 5.1. Let T be a QMS with a faithful normal invariant state.
If N (T ) = F(T ) then (4) holds.

We now proceed to the study of a smaller class of QMS, namely those
whose generator can be written in a generalised Lindblad type form.

6. The minimal QMS

We now introduce a class of QMS on B(h) whose infinitesimal gen-
erator is associated with quadratic forms L−(x) (x ∈ B(h))

L−(x)[v, u] = 〈Gv, xu〉+
∞∑

`=1

〈L`v, xL`u〉+ 〈v, xGu〉

(v, u ∈ Dom(G)) where the operators G, L` satisfy the following as-
sumption:

H the operator G is the generator of a strongly continuous con-
traction semigroup on h, L` are operators on h with Dom(L`) ⊇
Dom(G), and L−(1l) = 0, 1l being the identity operator on h.

These QMS arise in the study of irreversible evolutions of quantum
open systems (see [1], [3], [4], [23], [27]). The above formula for L−(x)
generalises (1) to unbounded operators G, L`.
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It is well-known (see e.g. [12] Sect.3, [14] Sect. 3.3) that, given a
domain D ⊆ dom(G), which is a core for G, it is possible to build up a
quantum dynamical semigroup, called the minimal QDS and denoted
T (min), satisfying the equation:

〈v, T (min)
t (x)u〉 = 〈v, xu〉+

∫ t

0
〈v,L−(T (min)

s (x))u〉ds, (5)

for u, v ∈ D.

For each positive x ∈ B(h), T (min)
t (x) is the l.u.b. of the increasing

sequence of bounded operators (T (n)
t (x))t≥0 on h defined recursively by

T (0)
t (x) = etG∗xetG

〈
v, T (n+1)

t (x)u
〉

=
〈
etGv, xetGu

〉
(6)

+
∑

`≥1

∫ t

0

〈
L`e

(t−s)Gv, T (n)
s (x)L`e

(t−s)Gu
〉

ds

(see e.g. [8] Prop. 2.3, [14] Ch.3 Sect.3 and also [20], [10]). Since

L−(1l) = 0, it is easy to see that T (min)
t (1l) ≤ 1l. Equation (5) determines

a unique QMS if and only if T (min)
t (1l) = 1l.

The minimal QDS is characterised by the property: for any w∗-
continuous family (Tt)t≥0 of positive maps on B(h) satisfying (5) we

have T (min)
t (x) ≤ Tt(x) for all positive x ∈ B(h) and all t ≥ 0 (see, for

instance, [14] Th. 3.21).

Let T (min)
∗ denote the predual semigroup on I1(h) with infinitesimal

generator L(min)
∗ . It is worth noticing here that T (min)

∗ is a weakly con-
tinuous semigroup on the Banach space of trace class operators on h,
hence it is strongly continuous. The linear span V of trace-class oper-

ators of the form |u〉〈v| is contained in the domain of L(min)
∗ . Thus we

can write the equation (5) as follows

tr (|u〉〈v|Tt(x)) = tr (|u〉〈v|x) +
∫ t

0
tr

(
L(min)
∗ (|u〉〈v|)Ts(x)

)
ds.

(7)

It can be shown that the solution to (5), (7) is unique whenever the

linear manifold L(min)
∗ (V) is big enough. Indeed, we have the following

Proposition 6.1. If the assumption H holds, the following conditions
are equivalent:

(i) the minimal QDS T (min) is Markov,

(ii) the linear manifold V is a core for L(min)
∗ ,

(iii) for each λ > 0 there exists no x ∈ B(h) such that L−(x) = λx.
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We refer to [12] Th. 3.2 or [14] Prop. 3.32 for the proof. It can
be shown also that, if T (min) is Markov, then it is the unique QMS
satisfying (5).

These are the basic steps for constructing our QMS from a form
generator L−. The above conditions (i),...,(iii), however, are difficult
(often impossible) to check in the applications. An easier and applica-
ble sufficient condition based on the existence of a positive self-adjoint
operator C satisfying

∑

`≥1

L∗`L` ≤ C, L−(C) ≤ bC,

b > 0 constant, was given in [8]. We shall not discuss further this
problem here.

We now look for a characterisation of subharmonic projections based
on the operators G and L`. Denote by R(p) the range of a projection
p on h.

Theorem 6.1. Suppose that the minimal QDS T associated with the
operators G, L` satisfying the hypothesis H is Markov. Let (Pt)t≥0 be
the strongly continuous contraction semigroup on h generated by G. A
projection p is subharmonic for T if and only if

Ptp = pPtp, L`u = pL`u, (8)

for all u ∈Dom(G) ∩R(p) and all t ≥ 0, ` ≥ 1.

Proof. (Sketch) The QMS T satisfies the identity (6) without the
(n + 1) and (n).

Suppose that p is subharmonic, thus Tt(p) ≥ p for all t ≥ 0. From
the identity (6) we obtain p⊥ ≥ Tt(p

⊥) ≥ Ptp
⊥Pt. Therefore, for all

u ∈ p we have

〈u, Ptp
⊥Ptu〉 = ‖p⊥Ptu‖2 = 0,

that is p⊥Ptp = 0. Thus Ptp = pPtp, for all t ≥ 0.
Moreover the equation (5) yields
∫ t

0

(
〈Gu, Ts(p

⊥)u〉+
∑

`≥1

〈L`u, Ts(p
⊥)L`u〉+ 〈u, Ts(p

⊥)Gu〉
)
ds ≤ 0,

for all t ≥ 0 and all u ∈Dom(G). Differentiating at t = 0 we obtain

〈Gu, p⊥u〉+
∑

`≥1

〈L`u, p⊥L`u〉+ 〈u, p⊥Gu〉 ≤ 0.

Now, if pu = u the above inequality yields p⊥L`u = 0, i.e. L`u =
pL`u for all ` ≥ 1 and u ∈Dom(G) ∩R(p).
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The converse can be proved by an induction argument based on the
recursive formula (6). Indeed, since p⊥Ptp = 0, we can start from

T (0)
t (p⊥) = P ∗

t p⊥Pt = p⊥P ∗
t p⊥Ptp

⊥ ≤ p⊥

and complete the induction argument (see [17] for the details). ¤
Condition (8) means that a projection p is subharmonic if and only

if its range R(p) is an invariant subspace for all the operators Pt and
Dom(G) ∩R(p) is an invariant subspace for all the operators L`.

As a consequence we have the following

Corollary 6.1. Suppose that the minimal QMS associated with the
operators G and L` is Markov. Then it is irreducible if and only if
there are no non-trivial invariant subspaces h0 for all the operators Pt

such that Dom(G) ∩ h0 is L`-invariant for all ` ≥ 1.

7. Existence of invariant states: conditions on G and L`’s

As we mentioned in the Introduction, however, in the applications
usually the operators G, L` are given. Therefore we now give now a
condition involving only these operators.

Definition 7.1. Given two selfadjoint operators X,Y , with X positive
and Y bounded form below, we write L−(x) ≤ −Y on D, whenever the
inequality

〈Gu,Xu〉+
∞∑

`=1

〈X1/2L`u, X1/2L`u〉+ 〈Xu,Gu〉 ≤ −〈u, Y u〉,
(9)

holds for all u in a linear manifold D dense in h, contained in the
domains of G, X and Y , which is a core for X and G, such that
L`(D) ⊆ D(X1/2), ( ` ≥ 1).

This is our sufficient condition based on the operators G, L`.

Theorem 7.1. Assume that the hypothesis H holds and that the min-
imal QDS T on B(h) associated with G, (L`)`≥1 is Markov. Suppose
that there exist two self-adjoint operators X and Y , with X positive and
Y bounded from below and with finite dimensional spectral projections
associated with bounded intervals, such that

(i) L−(x) ≤ −Y on D;
(ii) G is relatively bounded with respect to X;
(iii) L`(n + X)−1(D) ⊆ D(X1/2), (n, ` ≥ 1 ).

Then QMS T has a normal invariant state.
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Note that the above sufficient conditions always hold for a finite
dimensional space h by taking X = 1l, Y = 0 and D = h.

We refer to [16] for the proof. The basic idea is the following formal
computation

d

dt

(
X −

∫ t

0
Ts(Y )ds− Tt(X)

)
= −Tt (Y + L(X)) ≥ 0,

by the hypothesis (i). Therefore, since the argument of d/dt vanishes
at t = 0, it is a positive operator and the inequality (3) follows.

We now turn to the approach to an invariant state. The existence
of a faithful normal invariant state allows us to prove easily applicable
results on this problem.

We restrict ourselves to the case when the operators G, L` are
bounded referring to [15] Sect. 2 for the general case. The identity
L−(1l) = 0 (hypothesis H) yields 2G = −∑

` L∗`L` + iH for a bounded
self-adjoint operator H which is easily identified in the applications.
Moreover (see [21] Sect. 4) one can prove the

Theorem 7.2. Let T be a uniformly continuous QMS and let H, L`

the above elements of B(h). Then

N (T ) = {L1, L
∗
1, L2, L

∗
2, . . . }′ , F(T ) = {H,L1, L

∗
1, L2, L

∗
2, . . . }′ .

Here {· · · }′ denotes the commutator, i.e. the von Neumann algebra
of all the elements of A commuting with the operators listed within
braces.
Proof. We check first the identity for N (T ). Let a ∈ N (T ). Differ-
entiating the identity Tt(a

∗a) = Tt(a
∗)Tt(a) at t = 0 we find L(a∗a) =

a∗L(a) + L(a∗)a. For any a ∈ A a straightforward computation yields

L(a∗a)− a∗L(a)− L(a∗)a =
∑

`≥1

[L`, a]∗[L`, a].

The right-hand side is a sum of positive operators, therefore, if a be-
longs to N (T ), then a commutes with all the L`’s. In a similar way
we can show that also a∗ commutes with all the L`’s and, taking the
adjoint of commutators [L`, a], [L`, a

∗], that a commutes also with all
the L∗` ’s.

Conversely, if [L`, a] = 0 = [L∗` , a] for all ` ≥ 1, then a simple
computation yields L(a) = i[H, a]. This is the infinitesimal generator
of the QMS of operators a → eitHae−itH therefore Tt(a) = eitHae−itH

for all t ≥ 0. Thus a belongs to N (T ).
Finally, if a belongs to F(T ), then it belongs to F(T ). Therefore it

commutes with all the L`, L
∗
` ’s. Moreover, by the above argument, we
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have Tt(a) = eitHae−itH . The identity Tt(a) = a for all t ≥ 0 implies
that a commutes also with H.

Conversely, if a commutes with H and all the L`, L
∗
` ’s, the L(a) = 0.

Thus Tt(a) = a for all t ≥ 0. ¤

Conclusion. The above methods allow us to study the behaviour of
the dynamics of a quantum open system given through QMS (master
equation). The inspiration from the classical theory of Markov semi-
groups and processes led to the development of simple, powerful and
easily applicable tools. We shall not discuss applications to concrete
physical models here for lack of space. The interested reader can find
some of them [19].

Acknowledgment. The author is a member of GNAMPA-INDAM
Italy. The financialy support by the MIUR research program 2002-2003
“Quantum Probability and Applications” is gratefully acknowledged.

References

[1] Accardi, L.; Lu. Y.G. and Volovich, I.V.: Quantum Theory and its Stochastic
Limit. Springer Verlag, 2002.

[2] Albeverio, S. and Høegh-Krohn, R.: Frobenius theory for positive maps of von
Neumann algebras. Comm. Math. Phys. 64 (1978/79), no. 1, 83–94.

[3] Alicki, R.; Lendi, K.: Quantum Dynamical Semigroups and Applications. Lec-
ture Notes in Physics, 286. Springer (1987).

[4] Alli, G. and Sewell, G.L.: New methods and structures in the theory of the
multimode Dicke laser model. J. Math. Phys. 36 (1995), no. 10, 5598–5626.

[5] Bagarello, F. and Sewell, G. L.: New structures in the theory of the laser
model. II. Microscopic dynamics and a nonequilibrium entropy principle. J.
Math. Phys. 39 (1998), no. 5, 2730–2747.

[6] Blanchard, Ph.; Olkiewicz, R.: Effectively classical quantum states for open
systems. Phys. Lett. A 273 (2000), 223–231.

[7] Carbone, R.: Exponential Ergodicity of Some Quantum Markov Semigroups.
Ph.D. Thesis. Milano 2000.

[8] Chebotarev, A.M.; Fagnola, F: Sufficient conditions for conservativity of quan-
tum dynamical semigroups. Preprint n.308. Genoa, May 1996. J. Funct. Anal.
153, n. 2, p. 382–404 (1998).

[9] Cipriani, F.; Fagnola, F.; Lindsay, J.M.: Spectral Analysis and Feller Property
for Quantum Ornstein-Uhlenbeck Semigroups. Comm. Math. Phys. 210 (2000)
1, 85-105.

[10] Chung, K.L.: Markov Chains with Stationary Transition Probability. Springer-
Verlag, 1960.

[11] D’Ariano, G.M. and Sacchi, M.F.: Equivalence between squeezed-state and
twin-beam communication channels. Mod. Phys. Lett. B 11 (1997), n. 29,
1263–1275.

[12] Davies, E.B.: Quantum dynamical semigroups and the neutron diffusion equa-
tion. Rep. Math. Phys. 11 (1977), no. 2, 169–188.



QUANTUM MARKOV SEMIGROUPS 17

[13] Dixmier, J.: Les C∗-algbres et leurs reprsentations. Cahiers Scientifiques, Fasc.
XXIX. Gauthier-Villars diteur, Paris 1969.

[14] Fagnola, F.: Quantum Markov Semigroups and Quantum Markov Flows.
Proyecciones 18, n.3 (1999) 1–144.

[15] Fagnola, F. and Rebolledo, R.: The approach to equilibrium of a class of
quantum dynamical semigroups. Inf. Dim. Anal. Q. Prob. and Rel. Topics, 1
n.4, (1998), 1–12.

[16] Fagnola, F. and Rebolledo, R.: On the existence of stationary states for quan-
tum dynamical semigroups. J. Math. Phys.. 42, n.3 (2001) 1296–1308.

[17] Fagnola, F.; Rebolledo, R.: Subharmonic projections for a Quantum Markov
Semigroup. J. Math. Phys. 43 (2002), no. 2, 1074–1082.

[18] Fagnola, F.; Rebolledo, R.: Transience and recurrence of quantum Markov
semigroups. Probab. Theory Related Fields 126 (2003), no. 2, 289–306.

[19] Fagnola, F.; Rebolledo, R.: Lectures on the qualitative analysis of quan-
tum Markov semigroups. Quantum interacting particle systems (Trento, 2000),
197–239, QP–PQ: Quantum Probab. White Noise Anal., 14, World Sci. Pub-
lishing, River Edge, NJ, 2002.

[20] Feller, W.: On the integro-differential equations for purely discontinuous
Markov processes. Trans. Am. Math. Soc. 48 (1940), 488–575; Errata 58
(1945), 474.

[21] Frigerio, F. and Verri, M.: Long-Time Asymptotic Properties of Dynamical
Semigroups on W ∗–algebras. Math. Z. 180 (1982), 275–286.

[22] Gilles, L. and Knight, P.L.: Two-photon absorption and nonclassical states of
light. Phys. Rev. A 48 (1993), no. 2, 1582–1593.

[23] Gisin, N.; Percival, I.C.: The quantum-state diffusion model applied to open
systems. J. Phys. A: Math. Gen. 25 (1992), 5677–5691.

[24] Tosio Kato, Perturbation theory for linear operators. Corr. printing of the 2nd
ed. Springer–Verlag, N.Y., 1980.

[25] Lindblad, G.: On the generators of quantum dynamical semigroups. Comm.
Math. Phys. 48 (1976), no. 2, 119–130.
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